Generic framework for a coherent integration of experience and exposure rating in reinsurance

Stefan Bernegger
{"title":"Generic framework for a coherent integration of experience and exposure rating in reinsurance","authors":"Stefan Bernegger","doi":"10.1017/asb.2024.17","DOIUrl":null,"url":null,"abstract":"This article introduces a comprehensive framework that effectively combines <jats:italic>experience rating</jats:italic> and <jats:italic>exposure rating</jats:italic> approaches in reinsurance for both <jats:italic>short-tail</jats:italic> and <jats:italic>long-tail</jats:italic> businesses. The generic framework applies to all nonlife lines of business and products emphasizing nonproportional treaty business. The approach is based on three pillars that enable a coherent usage of all available information. The first pillar comprises an exposure-based <jats:italic>generative model</jats:italic> that emulates the <jats:italic>generative process</jats:italic> leading to the observed claims experience. The second pillar encompasses a standardized <jats:italic>reduction procedure</jats:italic> that maps each high-dimensional claim object to a few weakly coupled <jats:italic>reduced random variables</jats:italic>. The third pillar comprises calibrating the generative model with retrospective <jats:italic>Bayesian inference</jats:italic>. The derived calibration parameters are fed back into the generative model, and the reinsurance contracts covering future cover periods are rated by projecting the calibrated generative model to the cover period and applying the future contract terms.","PeriodicalId":501189,"journal":{"name":"ASTIN Bulletin: The Journal of the IAA","volume":"23 11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASTIN Bulletin: The Journal of the IAA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/asb.2024.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces a comprehensive framework that effectively combines experience rating and exposure rating approaches in reinsurance for both short-tail and long-tail businesses. The generic framework applies to all nonlife lines of business and products emphasizing nonproportional treaty business. The approach is based on three pillars that enable a coherent usage of all available information. The first pillar comprises an exposure-based generative model that emulates the generative process leading to the observed claims experience. The second pillar encompasses a standardized reduction procedure that maps each high-dimensional claim object to a few weakly coupled reduced random variables. The third pillar comprises calibrating the generative model with retrospective Bayesian inference. The derived calibration parameters are fed back into the generative model, and the reinsurance contracts covering future cover periods are rated by projecting the calibrated generative model to the cover period and applying the future contract terms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
再保险中经验与风险评级统一整合的通用框架
本文介绍了一个综合框架,该框架有效结合了短尾和长尾业务再保险中的经验评级和风险评级方法。该通用框架适用于所有非寿险业务和强调非比例条约业务的产品。该方法以三大支柱为基础,能够协调一致地使用所有可用信息。第一个支柱包括一个基于风险敞口的生成模型,它模拟了导致观察到的理赔经验的生成过程。第二根支柱包括标准化还原程序,将每个高维理赔对象映射为几个弱耦合的还原随机变量。第三根支柱包括利用回溯贝叶斯推理校准生成模型。得出的校准参数被反馈到生成模型中,通过将校准生成模型投射到覆盖期并应用未来合同条款,对覆盖未来覆盖期的再保险合同进行评级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of correlation between interest rates and mortality rates on the valuation of various life insurance products Generic framework for a coherent integration of experience and exposure rating in reinsurance Strategic underreporting and optimal deductible insurance Multidimensional credibility: A new approach based on joint distribution function Machine Learning with High-Cardinality Categorical Features in Actuarial Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1