Integration of traditional and telematics data for efficient insurance claims prediction

Hashan Peiris, Himchan Jeong, Jae-Kwang Kim, Hangsuck Lee
{"title":"Integration of traditional and telematics data for efficient insurance claims prediction","authors":"Hashan Peiris, Himchan Jeong, Jae-Kwang Kim, Hangsuck Lee","doi":"10.1017/asb.2024.6","DOIUrl":null,"url":null,"abstract":"While driver telematics has gained attention for risk classification in auto insurance, scarcity of observations with telematics features has been problematic, which could be owing to either privacy concerns or favorable selection compared to the data points with traditional features. To handle this issue, we apply a data integration technique based on calibration weights for usage-based insurance with multiple sources of data. It is shown that the proposed framework can efficiently integrate traditional data and telematics data and can also deal with possible favorable selection issues related to telematics data availability. Our findings are supported by a simulation study and empirical analysis in a synthetic telematics dataset.","PeriodicalId":501189,"journal":{"name":"ASTIN Bulletin: The Journal of the IAA","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASTIN Bulletin: The Journal of the IAA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/asb.2024.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

While driver telematics has gained attention for risk classification in auto insurance, scarcity of observations with telematics features has been problematic, which could be owing to either privacy concerns or favorable selection compared to the data points with traditional features. To handle this issue, we apply a data integration technique based on calibration weights for usage-based insurance with multiple sources of data. It is shown that the proposed framework can efficiently integrate traditional data and telematics data and can also deal with possible favorable selection issues related to telematics data availability. Our findings are supported by a simulation study and empirical analysis in a synthetic telematics dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
整合传统数据和远程信息处理技术数据,实现高效的保险理赔预测
虽然驾驶员远程信息处理技术在汽车保险的风险分类中备受关注,但具有远程信息处理技术特征的观测数据稀缺一直是个问题,这可能是出于隐私方面的考虑,也可能是由于与具有传统特征的数据点相比,远程信息处理技术具有更有利的选择。为了解决这个问题,我们将基于校准权重的数据整合技术应用于具有多种数据源的基于使用情况的保险。结果表明,所提出的框架可以有效地整合传统数据和远程信息处理数据,还可以处理与远程信息处理数据可用性相关的有利选择问题。我们的研究结果得到了模拟研究和合成远程信息处理数据集实证分析的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of correlation between interest rates and mortality rates on the valuation of various life insurance products Generic framework for a coherent integration of experience and exposure rating in reinsurance Strategic underreporting and optimal deductible insurance Multidimensional credibility: A new approach based on joint distribution function Machine Learning with High-Cardinality Categorical Features in Actuarial Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1