Revealing the structural behaviour of Brunelleschi’s Dome with machine learning techniques

IF 2.8 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Data Mining and Knowledge Discovery Pub Date : 2024-02-06 DOI:10.1007/s10618-024-01004-3
Stefano Masini, Silvia Bacci, Fabrizio Cipollini, Bruno Bertaccini
{"title":"Revealing the structural behaviour of Brunelleschi’s Dome with machine learning techniques","authors":"Stefano Masini, Silvia Bacci, Fabrizio Cipollini, Bruno Bertaccini","doi":"10.1007/s10618-024-01004-3","DOIUrl":null,"url":null,"abstract":"<p>The Brunelleschi’s Dome is one of the most iconic symbols of the Renaissance and is among the largest masonry domes ever constructed. Since the late 17th century, first masonry cracks appeared on the Dome, giving the start to a monitoring activity. In modern times, since 1988 a monitoring system comprised of 166 electronic sensors, including deformometers and thermometers, has been in operation, providing a valuable source of real-time data on the monument’s health status. With the deformometers taking measurements at least four times per day, a vast amount of data is now available to explore the potential of the latest Artificial Intelligence and Machine Learning techniques in the field of historical-architectural heritage conservation. The objective of this contribution is twofold. Firstly, for the first time ever, we aim to unveil the overall structural behaviour of the Dome as a whole, as well as that of its specific sections (known as webs). We achieve this by evaluating the effectiveness of certain dimensionality reduction techniques on the extensive daily detections generated by the monitoring system, while also accounting for fluctuations in temperature over time. Secondly, we estimate a number of recurrent and convolutional neural network models to verify their capability for medium- and long-term prediction of the structural evolution of the Dome. We believe this contribution is an important step forward in the protection and preservation of historical buildings, showing the utility of machine learning in a context in which these are still little used.</p>","PeriodicalId":55183,"journal":{"name":"Data Mining and Knowledge Discovery","volume":"50 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10618-024-01004-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The Brunelleschi’s Dome is one of the most iconic symbols of the Renaissance and is among the largest masonry domes ever constructed. Since the late 17th century, first masonry cracks appeared on the Dome, giving the start to a monitoring activity. In modern times, since 1988 a monitoring system comprised of 166 electronic sensors, including deformometers and thermometers, has been in operation, providing a valuable source of real-time data on the monument’s health status. With the deformometers taking measurements at least four times per day, a vast amount of data is now available to explore the potential of the latest Artificial Intelligence and Machine Learning techniques in the field of historical-architectural heritage conservation. The objective of this contribution is twofold. Firstly, for the first time ever, we aim to unveil the overall structural behaviour of the Dome as a whole, as well as that of its specific sections (known as webs). We achieve this by evaluating the effectiveness of certain dimensionality reduction techniques on the extensive daily detections generated by the monitoring system, while also accounting for fluctuations in temperature over time. Secondly, we estimate a number of recurrent and convolutional neural network models to verify their capability for medium- and long-term prediction of the structural evolution of the Dome. We believe this contribution is an important step forward in the protection and preservation of historical buildings, showing the utility of machine learning in a context in which these are still little used.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用机器学习技术揭示布鲁内莱斯基圆顶的结构行为
布鲁内莱斯基圆顶是文艺复兴时期最具代表性的标志之一,也是有史以来最大的砖石圆顶之一。自 17 世纪末以来,穹顶上出现了第一批砌体裂缝,从而开始了监测活动。到了现代,自 1988 年起,由 166 个电子传感器(包括变形计和温度计)组成的监测系统开始运行,为了解纪念碑的健康状况提供了宝贵的实时数据来源。由于变形计每天至少测量四次,因此现在可以利用大量数据来探索最新人工智能和机器学习技术在历史建筑遗产保护领域的潜力。这一贡献有两个目的。首先,我们首次旨在揭示穹顶作为一个整体及其特定部分(称为网状结构)的整体结构行为。为此,我们评估了某些降维技术对监测系统每天产生的大量检测结果的有效性,同时还考虑了温度随时间的波动。其次,我们估算了一些递归和卷积神经网络模型,以验证它们对穹顶结构演变进行中长期预测的能力。我们相信,这项研究在保护和保存历史建筑方面迈出了重要的一步,展示了机器学习在目前仍很少使用的情况下的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Data Mining and Knowledge Discovery
Data Mining and Knowledge Discovery 工程技术-计算机:人工智能
CiteScore
10.40
自引率
4.20%
发文量
68
审稿时长
10 months
期刊介绍: Advances in data gathering, storage, and distribution have created a need for computational tools and techniques to aid in data analysis. Data Mining and Knowledge Discovery in Databases (KDD) is a rapidly growing area of research and application that builds on techniques and theories from many fields, including statistics, databases, pattern recognition and learning, data visualization, uncertainty modelling, data warehousing and OLAP, optimization, and high performance computing.
期刊最新文献
FRUITS: feature extraction using iterated sums for time series classification Bounding the family-wise error rate in local causal discovery using Rademacher averages Evaluating the disclosure risk of anonymized documents via a machine learning-based re-identification attack Efficient learning with projected histograms Opinion dynamics in social networks incorporating higher-order interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1