A note on the convergence of deterministic gradient sampling in nonsmooth optimization

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED Computational Optimization and Applications Pub Date : 2024-02-06 DOI:10.1007/s10589-024-00552-0
Bennet Gebken
{"title":"A note on the convergence of deterministic gradient sampling in nonsmooth optimization","authors":"Bennet Gebken","doi":"10.1007/s10589-024-00552-0","DOIUrl":null,"url":null,"abstract":"<p>Approximation of subdifferentials is one of the main tasks when computing descent directions for nonsmooth optimization problems. In this article, we propose a bisection method for weakly lower semismooth functions which is able to compute new subgradients that improve a given approximation in case a direction with insufficient descent was computed. Combined with a recently proposed deterministic gradient sampling approach, this yields a deterministic and provably convergent way to approximate subdifferentials for computing descent directions.</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"158 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Optimization and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-024-00552-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Approximation of subdifferentials is one of the main tasks when computing descent directions for nonsmooth optimization problems. In this article, we propose a bisection method for weakly lower semismooth functions which is able to compute new subgradients that improve a given approximation in case a direction with insufficient descent was computed. Combined with a recently proposed deterministic gradient sampling approach, this yields a deterministic and provably convergent way to approximate subdifferentials for computing descent directions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于非平滑优化中确定性梯度采样收敛性的说明
在计算非光滑优化问题的下降方向时,近似子微分是主要任务之一。在本文中,我们提出了一种针对弱下半滑函数的二分法,该方法能够计算新的子梯度,从而在计算的下降方向不充分的情况下改进给定的近似值。结合最近提出的确定性梯度采样方法,这将产生一种确定性的、可证明收敛的近似子微分方法,用于计算下降方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
9.10%
发文量
91
审稿时长
10 months
期刊介绍: Computational Optimization and Applications is a peer reviewed journal that is committed to timely publication of research and tutorial papers on the analysis and development of computational algorithms and modeling technology for optimization. Algorithms either for general classes of optimization problems or for more specific applied problems are of interest. Stochastic algorithms as well as deterministic algorithms will be considered. Papers that can provide both theoretical analysis, along with carefully designed computational experiments, are particularly welcome. Topics of interest include, but are not limited to the following: Large Scale Optimization, Unconstrained Optimization, Linear Programming, Quadratic Programming Complementarity Problems, and Variational Inequalities, Constrained Optimization, Nondifferentiable Optimization, Integer Programming, Combinatorial Optimization, Stochastic Optimization, Multiobjective Optimization, Network Optimization, Complexity Theory, Approximations and Error Analysis, Parametric Programming and Sensitivity Analysis, Parallel Computing, Distributed Computing, and Vector Processing, Software, Benchmarks, Numerical Experimentation and Comparisons, Modelling Languages and Systems for Optimization, Automatic Differentiation, Applications in Engineering, Finance, Optimal Control, Optimal Design, Operations Research, Transportation, Economics, Communications, Manufacturing, and Management Science.
期刊最新文献
A family of conjugate gradient methods with guaranteed positiveness and descent for vector optimization Convergence of a quasi-Newton method for solving systems of nonlinear underdetermined equations Scaled-PAKKT sequential optimality condition for multiobjective problems and its application to an Augmented Lagrangian method A Newton-CG based barrier-augmented Lagrangian method for general nonconvex conic optimization Robust approximation of chance constrained optimization with polynomial perturbation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1