{"title":"On a conjecture of Conlon, Fox, and Wigderson","authors":"Chunchao Fan, Qizhong Lin, Yuanhui Yan","doi":"10.1017/s0963548324000026","DOIUrl":null,"url":null,"abstract":"For graphs <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline1.png\" /> <jats:tex-math> $G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline2.png\" /> <jats:tex-math> $H$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the Ramsey number <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline3.png\" /> <jats:tex-math> $r(G,H)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the smallest positive integer <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline4.png\" /> <jats:tex-math> $N$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that any red/blue edge colouring of the complete graph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline5.png\" /> <jats:tex-math> $K_N$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> contains either a red <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline6.png\" /> <jats:tex-math> $G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> or a blue <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline7.png\" /> <jats:tex-math> $H$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. A book <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline8.png\" /> <jats:tex-math> $B_n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a graph consisting of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline9.png\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> triangles all sharing a common edge. Recently, Conlon, Fox, and Wigderson conjectured that for any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline10.png\" /> <jats:tex-math> $0\\lt \\alpha \\lt 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the random lower bound <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline11.png\" /> <jats:tex-math> $r(B_{\\lceil \\alpha n\\rceil },B_n)\\ge (\\sqrt{\\alpha }+1)^2n+o(n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is not tight. In other words, there exists some constant <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline12.png\" /> <jats:tex-math> $\\beta \\gt (\\sqrt{\\alpha }+1)^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline13.png\" /> <jats:tex-math> $r(B_{\\lceil \\alpha n\\rceil },B_n)\\ge \\beta n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for all sufficiently large <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline14.png\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. This conjecture holds for every <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline15.png\" /> <jats:tex-math> $\\alpha \\lt 1/6$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> by a result of Nikiforov and Rousseau from 2005, which says that in this range <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline16.png\" /> <jats:tex-math> $r(B_{\\lceil \\alpha n\\rceil },B_n)=2n+3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for all sufficiently large <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline17.png\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We disprove the conjecture of Conlon, Fox, and Wigderson. Indeed, we show that the random lower bound is asymptotically tight for every <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline18.png\" /> <jats:tex-math> $1/4\\leq \\alpha \\leq 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Moreover, we show that for any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline19.png\" /> <jats:tex-math> $1/6\\leq \\alpha \\le 1/4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and large <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline20.png\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline21.png\" /> <jats:tex-math> $r(B_{\\lceil \\alpha n\\rceil }, B_n)\\le \\left (\\frac 32+3\\alpha \\right ) n+o(n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where the inequality is asymptotically tight when <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline22.png\" /> <jats:tex-math> $\\alpha =1/6$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> or <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline23.png\" /> <jats:tex-math> $1/4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We also give a lower bound of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline24.png\" /> <jats:tex-math> $r(B_{\\lceil \\alpha n\\rceil }, B_n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline25.png\" /> <jats:tex-math> $1/6\\le \\alpha \\lt \\frac{52-16\\sqrt{3}}{121}\\approx 0.2007$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, showing that the random lower bound is not tight, i.e., the conjecture of Conlon, Fox, and Wigderson holds in this interval.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548324000026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For graphs $G$ and $H$ , the Ramsey number $r(G,H)$ is the smallest positive integer $N$ such that any red/blue edge colouring of the complete graph $K_N$ contains either a red $G$ or a blue $H$ . A book $B_n$ is a graph consisting of $n$ triangles all sharing a common edge. Recently, Conlon, Fox, and Wigderson conjectured that for any $0\lt \alpha \lt 1$ , the random lower bound $r(B_{\lceil \alpha n\rceil },B_n)\ge (\sqrt{\alpha }+1)^2n+o(n)$ is not tight. In other words, there exists some constant $\beta \gt (\sqrt{\alpha }+1)^2$ such that $r(B_{\lceil \alpha n\rceil },B_n)\ge \beta n$ for all sufficiently large $n$ . This conjecture holds for every $\alpha \lt 1/6$ by a result of Nikiforov and Rousseau from 2005, which says that in this range $r(B_{\lceil \alpha n\rceil },B_n)=2n+3$ for all sufficiently large $n$ . We disprove the conjecture of Conlon, Fox, and Wigderson. Indeed, we show that the random lower bound is asymptotically tight for every $1/4\leq \alpha \leq 1$ . Moreover, we show that for any $1/6\leq \alpha \le 1/4$ and large $n$ , $r(B_{\lceil \alpha n\rceil }, B_n)\le \left (\frac 32+3\alpha \right ) n+o(n)$ , where the inequality is asymptotically tight when $\alpha =1/6$ or $1/4$ . We also give a lower bound of $r(B_{\lceil \alpha n\rceil }, B_n)$ for $1/6\le \alpha \lt \frac{52-16\sqrt{3}}{121}\approx 0.2007$ , showing that the random lower bound is not tight, i.e., the conjecture of Conlon, Fox, and Wigderson holds in this interval.