On a conjecture of Conlon, Fox, and Wigderson

Chunchao Fan, Qizhong Lin, Yuanhui Yan
{"title":"On a conjecture of Conlon, Fox, and Wigderson","authors":"Chunchao Fan, Qizhong Lin, Yuanhui Yan","doi":"10.1017/s0963548324000026","DOIUrl":null,"url":null,"abstract":"For graphs <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline1.png\" /> <jats:tex-math> $G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline2.png\" /> <jats:tex-math> $H$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the Ramsey number <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline3.png\" /> <jats:tex-math> $r(G,H)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the smallest positive integer <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline4.png\" /> <jats:tex-math> $N$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that any red/blue edge colouring of the complete graph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline5.png\" /> <jats:tex-math> $K_N$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> contains either a red <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline6.png\" /> <jats:tex-math> $G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> or a blue <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline7.png\" /> <jats:tex-math> $H$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. A book <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline8.png\" /> <jats:tex-math> $B_n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a graph consisting of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline9.png\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> triangles all sharing a common edge. Recently, Conlon, Fox, and Wigderson conjectured that for any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline10.png\" /> <jats:tex-math> $0\\lt \\alpha \\lt 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the random lower bound <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline11.png\" /> <jats:tex-math> $r(B_{\\lceil \\alpha n\\rceil },B_n)\\ge (\\sqrt{\\alpha }+1)^2n+o(n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is not tight. In other words, there exists some constant <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline12.png\" /> <jats:tex-math> $\\beta \\gt (\\sqrt{\\alpha }+1)^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline13.png\" /> <jats:tex-math> $r(B_{\\lceil \\alpha n\\rceil },B_n)\\ge \\beta n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for all sufficiently large <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline14.png\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. This conjecture holds for every <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline15.png\" /> <jats:tex-math> $\\alpha \\lt 1/6$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> by a result of Nikiforov and Rousseau from 2005, which says that in this range <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline16.png\" /> <jats:tex-math> $r(B_{\\lceil \\alpha n\\rceil },B_n)=2n+3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for all sufficiently large <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline17.png\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We disprove the conjecture of Conlon, Fox, and Wigderson. Indeed, we show that the random lower bound is asymptotically tight for every <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline18.png\" /> <jats:tex-math> $1/4\\leq \\alpha \\leq 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Moreover, we show that for any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline19.png\" /> <jats:tex-math> $1/6\\leq \\alpha \\le 1/4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and large <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline20.png\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline21.png\" /> <jats:tex-math> $r(B_{\\lceil \\alpha n\\rceil }, B_n)\\le \\left (\\frac 32+3\\alpha \\right ) n+o(n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where the inequality is asymptotically tight when <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline22.png\" /> <jats:tex-math> $\\alpha =1/6$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> or <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline23.png\" /> <jats:tex-math> $1/4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We also give a lower bound of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline24.png\" /> <jats:tex-math> $r(B_{\\lceil \\alpha n\\rceil }, B_n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000026_inline25.png\" /> <jats:tex-math> $1/6\\le \\alpha \\lt \\frac{52-16\\sqrt{3}}{121}\\approx 0.2007$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, showing that the random lower bound is not tight, i.e., the conjecture of Conlon, Fox, and Wigderson holds in this interval.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548324000026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For graphs $G$ and $H$ , the Ramsey number $r(G,H)$ is the smallest positive integer $N$ such that any red/blue edge colouring of the complete graph $K_N$ contains either a red $G$ or a blue $H$ . A book $B_n$ is a graph consisting of $n$ triangles all sharing a common edge. Recently, Conlon, Fox, and Wigderson conjectured that for any $0\lt \alpha \lt 1$ , the random lower bound $r(B_{\lceil \alpha n\rceil },B_n)\ge (\sqrt{\alpha }+1)^2n+o(n)$ is not tight. In other words, there exists some constant $\beta \gt (\sqrt{\alpha }+1)^2$ such that $r(B_{\lceil \alpha n\rceil },B_n)\ge \beta n$ for all sufficiently large $n$ . This conjecture holds for every $\alpha \lt 1/6$ by a result of Nikiforov and Rousseau from 2005, which says that in this range $r(B_{\lceil \alpha n\rceil },B_n)=2n+3$ for all sufficiently large $n$ . We disprove the conjecture of Conlon, Fox, and Wigderson. Indeed, we show that the random lower bound is asymptotically tight for every $1/4\leq \alpha \leq 1$ . Moreover, we show that for any $1/6\leq \alpha \le 1/4$ and large $n$ , $r(B_{\lceil \alpha n\rceil }, B_n)\le \left (\frac 32+3\alpha \right ) n+o(n)$ , where the inequality is asymptotically tight when $\alpha =1/6$ or $1/4$ . We also give a lower bound of $r(B_{\lceil \alpha n\rceil }, B_n)$ for $1/6\le \alpha \lt \frac{52-16\sqrt{3}}{121}\approx 0.2007$ , showing that the random lower bound is not tight, i.e., the conjecture of Conlon, Fox, and Wigderson holds in this interval.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于康伦、福克斯和维格德森的一个猜想
对于图形 $G$ 和 $H$,拉姆齐数 $r(G,H)$ 是最小的正整数 $N$,使得完整图形 $K_N$ 的任何红/蓝边着色都包含红色 $G$ 或蓝色 $H$。一本书 $B_n$ 是由所有共享一条公共边的 $n$ 三角形组成的图形。最近,Conlon、Fox 和 Wigderson 猜想,对于任意 $0\lt \alpha \lt 1$,随机下界 $r(B_{\lceil \alpha n\rceil },B_n)\ge (\sqrt{\alpha }+1)^2n+o(n)$ 并不严密。换句话说,存在某个常数 $beta \gt (\sqrt{\alpha }+1)^2$ ,使得 $r(B_{lceil \alpha n\rceil },B_n)\ge \beta n$ 对于所有足够大的 $n$ 。根据 Nikiforov 和 Rousseau 2005 年的一个结果,这个猜想在每一个 $\alpha \lt 1/6$ 都成立,这个结果说在这个范围内,对于所有足够大的 $n$ ,$r(B_{\lceil \alpha n\rceil },B_n)=2n+3$ 。我们推翻了康伦、福克斯和维格德森的猜想。事实上,我们证明了随机下界对于每 1/4 美元(α)和 1 美元(leq 1)都是渐近紧密的。此外,我们还证明了对于任意1/6leq \alpha \le 1/4$和大$n$,$r(B_{\lceil \alpha n\rceil }, B_n)\le \left (\frac 32+3\alpha \right ) n+o(n)$ ,其中当$\alpha =1/6$或1/4$时,不等式是渐近紧密的。我们还给出了 $r(B{\lceil \alpha n\rceil }, B_n)$ 为 $1/6\le \alpha \lt \frac{52-16\sqrt{3}}{121}\approx 0.2007$ 的下界,表明随机下界并不严密,即 Conlon、Fox 和 Wigderson 的猜想在此区间内成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new formula for the determinant and bounds on its tensor and Waring ranks On the Ramsey numbers of daisies I On the Ramsey numbers of daisies II List packing number of bounded degree graphs Counting spanning subgraphs in dense hypergraphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1