Fault Feature Extraction Method of Rolling Bearing Based on IAFD and TKEO

IF 1.4 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Sensors Pub Date : 2024-02-15 DOI:10.1155/2024/8551009
Kai Guo, Jun Ma, Xin Xiong, Yuming Hu, Xiang Li
{"title":"Fault Feature Extraction Method of Rolling Bearing Based on IAFD and TKEO","authors":"Kai Guo, Jun Ma, Xin Xiong, Yuming Hu, Xiang Li","doi":"10.1155/2024/8551009","DOIUrl":null,"url":null,"abstract":"The study of bearing fault feature extraction using adaptive Fourier decomposition (AFD) holds significant practical importance. However, AFD is constrained by its reliance on prior knowledge for determining decomposition levels, which can result in either underdecomposition or overdecomposition based on a single indicator. Consequently, an improved adaptive Fourier decomposition (IAFD) is proposed. First, a combined weight index called SP is constructed, and the whale optimization algorithm is employed to optimize the SP weight parameter. Second, the IAFD decomposition levels can be adaptively determined using the optimized SP. Finally, a feature extraction method-based IAFD and Teager–Kaiser energy operator is applied in rolling bearing fault diagnosis. Case studies on the Case Western Reserve University and self-made KUST-SY datasets validate the effectiveness of the proposed method.","PeriodicalId":48792,"journal":{"name":"Journal of Sensors","volume":"25 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sensors","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/8551009","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The study of bearing fault feature extraction using adaptive Fourier decomposition (AFD) holds significant practical importance. However, AFD is constrained by its reliance on prior knowledge for determining decomposition levels, which can result in either underdecomposition or overdecomposition based on a single indicator. Consequently, an improved adaptive Fourier decomposition (IAFD) is proposed. First, a combined weight index called SP is constructed, and the whale optimization algorithm is employed to optimize the SP weight parameter. Second, the IAFD decomposition levels can be adaptively determined using the optimized SP. Finally, a feature extraction method-based IAFD and Teager–Kaiser energy operator is applied in rolling bearing fault diagnosis. Case studies on the Case Western Reserve University and self-made KUST-SY datasets validate the effectiveness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 IAFD 和 TKEO 的滚动轴承故障特征提取方法
利用自适应傅立叶分解(AFD)进行轴承故障特征提取的研究具有重要的现实意义。然而,自适应傅立叶分解受限于其对确定分解级别的先验知识的依赖,这可能导致基于单一指标的分解不足或分解过度。因此,我们提出了一种改进的自适应傅立叶分解(IAFD)。首先,构建一个称为 SP 的组合权重指标,并采用鲸鱼优化算法来优化 SP 权重参数。其次,利用优化后的 SP 自适应地确定 IAFD 分解级别。最后,将基于 IAFD 和 Teager-Kaiser 能量算子的特征提取方法应用于滚动轴承故障诊断。在凯斯西储大学和自制的 KUST-SY 数据集上进行的案例研究验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Sensors
Journal of Sensors ENGINEERING, ELECTRICAL & ELECTRONIC-INSTRUMENTS & INSTRUMENTATION
CiteScore
4.10
自引率
5.30%
发文量
833
审稿时长
18 weeks
期刊介绍: Journal of Sensors publishes papers related to all aspects of sensors, from their theory and design, to the applications of complete sensing devices. All classes of sensor are covered, including acoustic, biological, chemical, electronic, electromagnetic (including optical), mechanical, proximity, and thermal. Submissions relating to wearable, implantable, and remote sensing devices are encouraged. Envisaged applications include, but are not limited to: -Medical, healthcare, and lifestyle monitoring -Environmental and atmospheric monitoring -Sensing for engineering, manufacturing and processing industries -Transportation, navigation, and geolocation -Vision, perception, and sensing for robots and UAVs The journal welcomes articles that, as well as the sensor technology itself, consider the practical aspects of modern sensor implementation, such as networking, communications, signal processing, and data management. As well as original research, the Journal of Sensors also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
期刊最新文献
Energy-Efficient and Resilient Secure Routing in Energy Harvesting Wireless Sensor Networks with Transceiver Noises: EcoSecNet Design and Analysis A Passive Wireless Smart Washer for Locking Force Monitoring on the Orthopedic Pedicle Screw Modeling Forest Above-Ground Biomass of Teak (Tectona grandis L. F.) Using Field Measurement and Sentinel-2 Imagery Implementation and Comparison of Wearable Exoskeleton Arm Design with Fuzzy Logic and Machine Learning Control Platform Design of Passive Target Perception and Localization Based on Sensor Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1