Estimation of the density for censored and contaminated data

Pub Date : 2024-02-07 DOI:10.1002/sta4.651
Ingrid Van Keilegom, Elif Kekeç
{"title":"Estimation of the density for censored and contaminated data","authors":"Ingrid Van Keilegom, Elif Kekeç","doi":"10.1002/sta4.651","DOIUrl":null,"url":null,"abstract":"Consider a situation where one is interested in estimating the density of a survival time that is subject to random right censoring and measurement errors. This happens often in practice, like in public health (pregnancy length), medicine (duration of infection), ecology (duration of forest fire), among others. We assume a classical additive measurement error model with Gaussian noise and unknown error variance and a random right censoring scheme. Under this setup, we develop minimal conditions under which the assumed model is identifiable when no auxiliary variables or validation data are available, and we offer a flexible estimation strategy using Laguerre polynomials for the estimation of the error variance and the density of the survival time. The asymptotic normality of the proposed estimators is established, and the numerical performance of the methodology is investigated on both simulated and real data on gestational age.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Consider a situation where one is interested in estimating the density of a survival time that is subject to random right censoring and measurement errors. This happens often in practice, like in public health (pregnancy length), medicine (duration of infection), ecology (duration of forest fire), among others. We assume a classical additive measurement error model with Gaussian noise and unknown error variance and a random right censoring scheme. Under this setup, we develop minimal conditions under which the assumed model is identifiable when no auxiliary variables or validation data are available, and we offer a flexible estimation strategy using Laguerre polynomials for the estimation of the error variance and the density of the survival time. The asymptotic normality of the proposed estimators is established, and the numerical performance of the methodology is investigated on both simulated and real data on gestational age.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
普查数据和污染数据的密度估算
考虑这样一种情况,即我们有兴趣估计受随机右删减和测量误差影响的生存时间的密度。这种情况在实践中经常发生,如公共卫生(怀孕时间)、医学(感染持续时间)、生态学(森林火灾持续时间)等。我们假设一个经典的加性测量误差模型,具有高斯噪声、未知误差方差和随机右删减方案。在这种设置下,我们提出了在没有辅助变量或验证数据的情况下可识别假定模型的最低条件,并提供了使用拉盖尔多项式估算误差方差和生存时间密度的灵活估算策略。我们还提出了一种灵活的估算策略,利用拉格多项式来估算误差方差和生存时间密度。我们建立了所提出的估算器的渐近正态性,并在模拟和真实孕龄数据上研究了该方法的数值性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1