Deep learning models to predict primary open-angle glaucoma

Pub Date : 2024-02-07 DOI:10.1002/sta4.649
Ruiwen Zhou, J. Philip Miller, Mae Gordon, Michael Kass, Mingquan Lin, Yifan Peng, Fuhai Li, Jiarui Feng, Lei Liu
{"title":"Deep learning models to predict primary open-angle glaucoma","authors":"Ruiwen Zhou, J. Philip Miller, Mae Gordon, Michael Kass, Mingquan Lin, Yifan Peng, Fuhai Li, Jiarui Feng, Lei Liu","doi":"10.1002/sta4.649","DOIUrl":null,"url":null,"abstract":"Glaucoma is a major cause of blindness and vision impairment worldwide, and visual field (VF) tests are essential for monitoring the conversion of glaucoma. While previous studies have primarily focused on using VF data at a single time point for glaucoma prediction, there has been limited exploration of longitudinal trajectories. Additionally, many deep learning techniques treat the time-to-glaucoma prediction as a binary classification problem (glaucoma Yes/No), resulting in the misclassification of some censored subjects into the nonglaucoma category and decreased power. To tackle these challenges, we propose and implement several deep-learning approaches that naturally incorporate temporal and spatial information from longitudinal VF data to predict time-to-glaucoma. When evaluated on the Ocular Hypertension Treatment Study (OHTS) dataset, our proposed convolutional neural network (CNN)-long short-term memory (LSTM) emerged as the top-performing model among all those examined. The implementation code can be found online (https://github.com/rivenzhou/VF_prediction).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Glaucoma is a major cause of blindness and vision impairment worldwide, and visual field (VF) tests are essential for monitoring the conversion of glaucoma. While previous studies have primarily focused on using VF data at a single time point for glaucoma prediction, there has been limited exploration of longitudinal trajectories. Additionally, many deep learning techniques treat the time-to-glaucoma prediction as a binary classification problem (glaucoma Yes/No), resulting in the misclassification of some censored subjects into the nonglaucoma category and decreased power. To tackle these challenges, we propose and implement several deep-learning approaches that naturally incorporate temporal and spatial information from longitudinal VF data to predict time-to-glaucoma. When evaluated on the Ocular Hypertension Treatment Study (OHTS) dataset, our proposed convolutional neural network (CNN)-long short-term memory (LSTM) emerged as the top-performing model among all those examined. The implementation code can be found online (https://github.com/rivenzhou/VF_prediction).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
预测原发性开角型青光眼的深度学习模型
青光眼是全球失明和视力受损的主要原因,而视野(VF)测试对于监测青光眼的转归至关重要。以往的研究主要侧重于使用单个时间点的视野数据进行青光眼预测,而对纵向轨迹的探索还很有限。此外,许多深度学习技术将时间到青光眼的预测视为二元分类问题(青光眼是/否),导致将一些删减的受试者误分类为非青光眼类别,降低了预测效果。为了应对这些挑战,我们提出并实施了几种深度学习方法,这些方法自然地结合了纵向 VF 数据中的时间和空间信息来预测青光眼的发生时间。在眼压治疗研究(OHTS)数据集上进行评估时,我们提出的卷积神经网络(CNN)-长短期记忆(LSTM)成为所有受检模型中表现最佳的模型。实现代码可在线查阅(https://github.com/rivenzhou/VF_prediction)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1