Reproducible research practices: A tool for effective and efficient leadership in collaborative statistics

Pub Date : 2024-02-11 DOI:10.1002/sta4.653
Camille J. Hochheimer, Grace N. Bosma, Lauren Gunn-Sandell, Mary D. Sammel
{"title":"Reproducible research practices: A tool for effective and efficient leadership in collaborative statistics","authors":"Camille J. Hochheimer, Grace N. Bosma, Lauren Gunn-Sandell, Mary D. Sammel","doi":"10.1002/sta4.653","DOIUrl":null,"url":null,"abstract":"With data and code sharing policies more common and version control more widely used in statistics, standards for reproducible research are higher than ever. Reproducible research practices must keep up with the fast pace of research. To do so, we propose combining modern practices of leadership with best practices for reproducible research in collaborative statistics as an effective tool for ensuring quality and accuracy while developing stewardship and autonomy in the people we lead. First, we establish a framework for expectations of reproducible statistical research. Then, we introduce Stephen M.R. Covey's theory of trusting and inspiring leadership. These two are combined as we show how stewardship agreements can be used to make reproducible coding a team norm. We provide an illustrative code example and highlight how this method creates a more collaborative rather than evaluative culture where team members hold themselves accountable. The goal of this manuscript is for statisticians to find this application of leadership theory useful and to inspire them to intentionally develop their personal approach to leadership.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With data and code sharing policies more common and version control more widely used in statistics, standards for reproducible research are higher than ever. Reproducible research practices must keep up with the fast pace of research. To do so, we propose combining modern practices of leadership with best practices for reproducible research in collaborative statistics as an effective tool for ensuring quality and accuracy while developing stewardship and autonomy in the people we lead. First, we establish a framework for expectations of reproducible statistical research. Then, we introduce Stephen M.R. Covey's theory of trusting and inspiring leadership. These two are combined as we show how stewardship agreements can be used to make reproducible coding a team norm. We provide an illustrative code example and highlight how this method creates a more collaborative rather than evaluative culture where team members hold themselves accountable. The goal of this manuscript is for statisticians to find this application of leadership theory useful and to inspire them to intentionally develop their personal approach to leadership.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
可复制的研究实践:切实有效领导合作统计工作的工具
随着数据和代码共享政策越来越普遍,版本控制在统计领域的应用也越来越广泛,可重复研究的标准比以往任何时候都要高。可重复研究实践必须跟上快速的研究步伐。为此,我们建议将现代领导力实践与合作统计中的可重现研究最佳实践相结合,作为确保质量和准确性的有效工具,同时培养我们所领导的人员的管理能力和自主性。首先,我们建立了一个对可重复统计研究的期望框架。然后,我们介绍斯蒂芬-柯维(Stephen M.R. Covey)的信任和激励型领导理论。我们将这两者结合起来,展示如何利用管理协议使可重复编码成为团队规范。我们提供了一个代码示例,并强调了这种方法如何创造出一种更具协作性而非评价性的文化,让团队成员对自己负责。本手稿的目的是让统计人员发现领导力理论的应用非常有用,并激励他们有意识地发展个人的领导力方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1