The deep-acceptor nature of the chalcogen vacancies in 2D transition-metal dichalcogenides

IF 4.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY 2D Materials Pub Date : 2024-01-30 DOI:10.1088/2053-1583/ad2108
Shoaib Khalid, Bharat Medasani, John L Lyons, Darshana Wickramaratne, Anderson Janotti
{"title":"The deep-acceptor nature of the chalcogen vacancies in 2D transition-metal dichalcogenides","authors":"Shoaib Khalid, Bharat Medasani, John L Lyons, Darshana Wickramaratne, Anderson Janotti","doi":"10.1088/2053-1583/ad2108","DOIUrl":null,"url":null,"abstract":"Chalcogen vacancies in the semiconducting monolayer transition-metal dichalcogenides (TMDs) have frequently been invoked to explain a wide range of phenomena, including both unintentional p-type and n-type conductivity, as well as sub-band gap defect levels measured via tunneling or optical spectroscopy. These conflicting interpretations of the deep versus shallow nature of the chalcogen vacancies are due in part to shortcomings in prior first-principles calculations of defects in the semiconducting two-dimensional TMDs that have been used to explain experimental observations. Here we report results of hybrid density functional calculations for the chalcogen vacancy in a series of monolayer TMDs, correctly referencing the thermodynamic charge transition levels to the fundamental band gap (as opposed to the optical band gap). We find that the chalcogen vacancies are deep acceptors and cannot lead to n-type or p-type conductivity. Both the (0/−1) and (−1/−2) transition levels occur in the gap, leading to paramagnetic charge states <inline-formula>\n<tex-math><?CDATA $S = 1/2$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>S</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:math>\n<inline-graphic xlink:href=\"tdmad2108ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> and <italic toggle=\"yes\">S</italic> = 1, respectively, in a collinear-spin representation. We discuss trends in terms of the band alignments between the TMDs, which can serve as a guide to future experimental studies of vacancy behavior.","PeriodicalId":6812,"journal":{"name":"2D Materials","volume":"21 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2D Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1583/ad2108","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Chalcogen vacancies in the semiconducting monolayer transition-metal dichalcogenides (TMDs) have frequently been invoked to explain a wide range of phenomena, including both unintentional p-type and n-type conductivity, as well as sub-band gap defect levels measured via tunneling or optical spectroscopy. These conflicting interpretations of the deep versus shallow nature of the chalcogen vacancies are due in part to shortcomings in prior first-principles calculations of defects in the semiconducting two-dimensional TMDs that have been used to explain experimental observations. Here we report results of hybrid density functional calculations for the chalcogen vacancy in a series of monolayer TMDs, correctly referencing the thermodynamic charge transition levels to the fundamental band gap (as opposed to the optical band gap). We find that the chalcogen vacancies are deep acceptors and cannot lead to n-type or p-type conductivity. Both the (0/−1) and (−1/−2) transition levels occur in the gap, leading to paramagnetic charge states S=1/2 and S = 1, respectively, in a collinear-spin representation. We discuss trends in terms of the band alignments between the TMDs, which can serve as a guide to future experimental studies of vacancy behavior.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维过渡金属二粲化物中的粲空位的深度接受性质
半导体单层过渡金属二掺杂物(TMDs)中的瑀空位经常被用来解释各种现象,包括无意的 p 型和 n 型导电性,以及通过隧道或光学光谱测量的亚带隙缺陷水平。这些关于查尔根空位深浅性质的相互矛盾的解释,部分是由于之前用于解释实验观察结果的二维 TMD 半导体缺陷的第一原理计算存在缺陷。在此,我们报告了一系列单层 TMD 中胆原空位的混合密度泛函计算结果,正确地将热力学电荷转移水平引用到基带隙(而不是光带隙)。我们发现,查尔根空位是深度受体,不能导致 n 型或 p 型导电性。(0/-1)和(-1/-2)转变级都出现在带隙中,分别导致了顺磁电荷态 S=1/2 和 S = 1,采用的是准线-自旋表示法。我们讨论了 TMD 之间的带排列趋势,这可作为未来空位行为实验研究的指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
2D Materials
2D Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
10.70
自引率
5.50%
发文量
138
审稿时长
1.5 months
期刊介绍: 2D Materials is a multidisciplinary, electronic-only journal devoted to publishing fundamental and applied research of the highest quality and impact covering all aspects of graphene and related two-dimensional materials.
期刊最新文献
Constructing three-dimensional GO/CNT@NMP aerogels towards primary lithium metal batteries Two-dimensional Janus MXTe (M = Hf, Zr; X = S, Se) piezoelectrocatalysts: a comprehensive investigation of its electronic, synthesis feasibility, electric polarization, and hydrogen evolution reaction activity The future of Xenes beyond graphene: challenges and perspective Soft-carbon-tuned hard carbon anode for ultrahigh-rate sodium storage Multiscale computational modeling techniques in study and design of 2D materials: recent advances, challenges, and opportunities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1