Measure of deviancy from marginal mean equality based on cumulative marginal probabilities in square contingency tables

Pub Date : 2024-02-05 DOI:10.1007/s00184-023-00945-x
Shuji Ando
{"title":"Measure of deviancy from marginal mean equality based on cumulative marginal probabilities in square contingency tables","authors":"Shuji Ando","doi":"10.1007/s00184-023-00945-x","DOIUrl":null,"url":null,"abstract":"<p>This study proposes a measure that can concurrently evaluate the degree and direction of deviancy from the marginal mean equality (ME) model in square contingency tables with ordered categories. The proposed measure is constructed as the function of the row and column cumulative marginal probabilities. When the ME model does not fit data, we are interested in measuring the degree of deviancy from the ME model, because the model having weaker restrictions than the ME model is only the saturated model. This existing measure, which represents the degree of deviancy from the ME model, does not depend on the probabilities that observations will fall in the main diagonal cells of the table. For the data in which observations are concentrated in the main diagonal cells, the existing measure may overestimate the degree of deviancy from the ME model. The proposed measure can address this issue. This study derives an estimator and an approximate confidence interval for the proposed measure using the delta method. The proposed measure would be utility for comparing degrees of deviancy from the ME model in two datasets. The proposed measure is evaluated the usefulness with the application to real data of clinical trials.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00184-023-00945-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes a measure that can concurrently evaluate the degree and direction of deviancy from the marginal mean equality (ME) model in square contingency tables with ordered categories. The proposed measure is constructed as the function of the row and column cumulative marginal probabilities. When the ME model does not fit data, we are interested in measuring the degree of deviancy from the ME model, because the model having weaker restrictions than the ME model is only the saturated model. This existing measure, which represents the degree of deviancy from the ME model, does not depend on the probabilities that observations will fall in the main diagonal cells of the table. For the data in which observations are concentrated in the main diagonal cells, the existing measure may overestimate the degree of deviancy from the ME model. The proposed measure can address this issue. This study derives an estimator and an approximate confidence interval for the proposed measure using the delta method. The proposed measure would be utility for comparing degrees of deviancy from the ME model in two datasets. The proposed measure is evaluated the usefulness with the application to real data of clinical trials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
基于方形或然率表中累积边际概率的边际均值偏离度量
本研究提出了一种测量方法,可以同时评估有序类别方差表中边际均值相等(ME)模型的偏离程度和方向。所提出的测量方法是行和列累积边际概率的函数。当 ME 模型不适合数据时,我们就会对测量 ME 模型的偏离程度感兴趣,因为比 ME 模型限制更弱的模型只是饱和模型。现有的这一测量方法表示 ME 模型的偏离程度,它不依赖于观测值落在表格主对角线单元格中的概率。对于观测值集中在主对角线单元格中的数据,现有的度量方法可能会高估 ME 模型的偏离程度。建议的测量方法可以解决这个问题。本研究使用 delta 方法为所提出的测量方法推导出一个估计值和一个近似置信区间。提出的测量方法可用于比较两个数据集中 ME 模型的偏离程度。通过应用于临床试验的真实数据,对所提出的测量方法的实用性进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1