Hongtao Xia, Yuting Liu, Yang Wang, Zihao Feng, Qi Ren, Jianqi Lv, Yang Li, Yanjun Du, Yun Wang
{"title":"Incorporation of phytic acid into reed straw-derived hydrochar for highly efficient and selective adsorption of uranium(VI)","authors":"Hongtao Xia, Yuting Liu, Yang Wang, Zihao Feng, Qi Ren, Jianqi Lv, Yang Li, Yanjun Du, Yun Wang","doi":"10.1515/ract-2023-0250","DOIUrl":null,"url":null,"abstract":"An innovative phytic acid modified reed straw-derived hydrochar composite (PA-C-RBC) was prepared by using inexpensive reed straw and non-toxic phytic acid for the removal of uranium(VI) from aqueous environment. Several characterization results showed that PA-C-RBC was rough and porous with a large number of hydroxyl, carboxyl, and phosphate groups. The uranium(VI) adsorption process by PA-C-RBC conformed to pseudo-second-order kinetic and Langmuir models, and the theoretical maximal adsorption capacity could attain 418.78 mg/g at pH 5.0. PA-C-RBC had 72.66 % of selectivity and 6772.99 mL/g of distribution coefficient for U(VI). Due to the strong chelating between the hydroxyl and phosphate groups on PA-C-RBC and U(VI), PA-C-RBC had excellent adsorption selectivity. These finding highlighted a high potential for removing U(VI) from aqueous solutions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/ract-2023-0250","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
An innovative phytic acid modified reed straw-derived hydrochar composite (PA-C-RBC) was prepared by using inexpensive reed straw and non-toxic phytic acid for the removal of uranium(VI) from aqueous environment. Several characterization results showed that PA-C-RBC was rough and porous with a large number of hydroxyl, carboxyl, and phosphate groups. The uranium(VI) adsorption process by PA-C-RBC conformed to pseudo-second-order kinetic and Langmuir models, and the theoretical maximal adsorption capacity could attain 418.78 mg/g at pH 5.0. PA-C-RBC had 72.66 % of selectivity and 6772.99 mL/g of distribution coefficient for U(VI). Due to the strong chelating between the hydroxyl and phosphate groups on PA-C-RBC and U(VI), PA-C-RBC had excellent adsorption selectivity. These finding highlighted a high potential for removing U(VI) from aqueous solutions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.