{"title":"Development of gelatin nanoparticles for positron emission tomography diagnosis in pancreatic cancer","authors":"Yumi Sugo, Atsushi Kimura, Tomoya Koizumi, Kotaro Oyama, Mitsumasa Taguchi","doi":"10.1515/ract-2024-0304","DOIUrl":null,"url":null,"abstract":"Pancreatic cancer remains difficult to diagnose using currently available imaging probes. Thus, this study aimed to develop a novel imaging agent for the diagnosis of pancreatic cancer using positron emission tomography (PET). Specifically, this study explores gelatin-based nanoparticles fabricated via radiation-induced crosslinking, as gelatin is known for its ability to produce biocompatible materials. Aqueous gelatin solutions were irradiated with γ-rays to produce nanoparticles with average diameters of 5–20 nm via a radiation crosslinking technique. The gelatin nanoparticles were labeled with <jats:sup>64</jats:sup>Cu, exhibiting negative surface potentials. Furthermore, the nanoparticles were evaluated <jats:italic>in vivo</jats:italic> by injecting them into pancreatic tumor-bearing mice. Notably, the nanoparticles accumulated in the tumors. Hence, <jats:sup>64</jats:sup>Cu-labeled gelatin nanoparticles show promise as a platform for next-generation PET imaging agents for pancreatic cancer.","PeriodicalId":21167,"journal":{"name":"Radiochimica Acta","volume":"37 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiochimica Acta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/ract-2024-0304","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Pancreatic cancer remains difficult to diagnose using currently available imaging probes. Thus, this study aimed to develop a novel imaging agent for the diagnosis of pancreatic cancer using positron emission tomography (PET). Specifically, this study explores gelatin-based nanoparticles fabricated via radiation-induced crosslinking, as gelatin is known for its ability to produce biocompatible materials. Aqueous gelatin solutions were irradiated with γ-rays to produce nanoparticles with average diameters of 5–20 nm via a radiation crosslinking technique. The gelatin nanoparticles were labeled with 64Cu, exhibiting negative surface potentials. Furthermore, the nanoparticles were evaluated in vivo by injecting them into pancreatic tumor-bearing mice. Notably, the nanoparticles accumulated in the tumors. Hence, 64Cu-labeled gelatin nanoparticles show promise as a platform for next-generation PET imaging agents for pancreatic cancer.