Preliminary Study of Dental Caries Detection by Deep Neural Network Applying Domain-Specific Transfer Learning

IF 1.6 4区 医学 Q4 ENGINEERING, BIOMEDICAL Journal of Medical and Biological Engineering Pub Date : 2024-02-13 DOI:10.1007/s40846-024-00848-w
Toshiyuki Kawazu, Yohei Takeshita, Mamiko Fujikura, Shunsuke Okada, Miki Hisatomi, Junichi Asaumi
{"title":"Preliminary Study of Dental Caries Detection by Deep Neural Network Applying Domain-Specific Transfer Learning","authors":"Toshiyuki Kawazu, Yohei Takeshita, Mamiko Fujikura, Shunsuke Okada, Miki Hisatomi, Junichi Asaumi","doi":"10.1007/s40846-024-00848-w","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>The purpose of this study is to confirm whether it is possible to acquire a certain degree of diagnostic ability even with a small dataset using domain-specific transfer learning. In this study, we constructed a simulated caries detection model on panoramic tomography using transfer learning.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>A simulated caries model was trained and validated using 1094 trimmed intraoral images. A convolutional neural network (CNN) with three convolution and three max pooling layers was developed. We applied this caries detection model to 50 panoramic images and evaluated its diagnostic performance.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The diagnostic performance of the CNN model on the intraoral film was as follows: C0 84.6%; C1 90.6%; C2 88.6%. Finally, we tested 50 panoramic images with simulated caries insertion. The diagnostic performance of the CNN model on the panoramic image was as follows: C0 75.0%, C1 80.0%, C2 80.0%, and overall diagnostic accuracy was 78.0%. The diagnostic performance of the caries detection model constructed only with panoramic images was much lower than that of the intraoral film.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Domain-specific transfer learning methods may be useful for saving datasets and training time (179/250).</p>","PeriodicalId":50133,"journal":{"name":"Journal of Medical and Biological Engineering","volume":"1 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical and Biological Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40846-024-00848-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

The purpose of this study is to confirm whether it is possible to acquire a certain degree of diagnostic ability even with a small dataset using domain-specific transfer learning. In this study, we constructed a simulated caries detection model on panoramic tomography using transfer learning.

Methods

A simulated caries model was trained and validated using 1094 trimmed intraoral images. A convolutional neural network (CNN) with three convolution and three max pooling layers was developed. We applied this caries detection model to 50 panoramic images and evaluated its diagnostic performance.

Results

The diagnostic performance of the CNN model on the intraoral film was as follows: C0 84.6%; C1 90.6%; C2 88.6%. Finally, we tested 50 panoramic images with simulated caries insertion. The diagnostic performance of the CNN model on the panoramic image was as follows: C0 75.0%, C1 80.0%, C2 80.0%, and overall diagnostic accuracy was 78.0%. The diagnostic performance of the caries detection model constructed only with panoramic images was much lower than that of the intraoral film.

Conclusion

Domain-specific transfer learning methods may be useful for saving datasets and training time (179/250).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用特定领域迁移学习的深度神经网络龋齿检测初步研究
目的 本研究的目的是确认是否有可能利用特定领域的迁移学习,即使数据集很小,也能获得一定程度的诊断能力。方法使用 1094 张修剪过的口内图像训练并验证了一个模拟龋齿模型。开发了一个具有三个卷积层和三个最大池化层的卷积神经网络(CNN)。我们将该龋病检测模型应用于 50 幅全景图像,并评估了其诊断性能:C0 84.6%;C1 90.6%;C2 88.6%。最后,我们测试了 50 张模拟龋齿插入的全景图像。CNN 模型在全景图像上的诊断性能如下:C0 75.0%;C1 90.6%;C2 88.6%:C0 75.0%、C1 80.0%、C2 80.0%,总体诊断准确率为 78.0%。仅使用全景图像构建的龋齿检测模型的诊断性能远远低于口内胶片的诊断性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
5.00%
发文量
81
审稿时长
3 months
期刊介绍: The purpose of Journal of Medical and Biological Engineering, JMBE, is committed to encouraging and providing the standard of biomedical engineering. The journal is devoted to publishing papers related to clinical engineering, biomedical signals, medical imaging, bio-informatics, tissue engineering, and so on. Other than the above articles, any contributions regarding hot issues and technological developments that help reach the purpose are also included.
期刊最新文献
Influence of Different Stages of Post-Traumatic Elbow Joint Capsule Healing on Pronation Movement Attribute and Malignancy Analysis of Lung Nodule on Chest CT with Cause-and-Effect Logic Biomechanical Performance of Different Implant Spacings and Placement Angles in Partial Fixed Denture Prosthesis Restorations: A Finite Element Analysis Enhancing Myocardial Infarction Diagnosis: LSTM-based Deep Learning Approach Integrating Echocardiographic Wall Motion Analysis Investigation of Image Quality for Cuboid and Tapered Array microPET Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1