{"title":"Joint streaming model for backchannel prediction and automatic speech recognition","authors":"Yong-Seok Choi, Jeong-Uk Bang, Seung Hi Kim","doi":"10.4218/etrij.2023-0358","DOIUrl":null,"url":null,"abstract":"<p>In human conversations, listeners often utilize brief backchannels such as “uh-huh” or “yeah.” Timely backchannels are crucial to understanding and increasing trust among conversational partners. In human–machine conversation systems, users can engage in natural conversations when a conversational agent generates backchannels like a human listener. We propose a method that simultaneously predicts backchannels and recognizes speech in real time. We use a streaming transformer and adopt multitask learning for concurrent backchannel prediction and speech recognition. The experimental results demonstrate the superior performance of our method compared with previous works while maintaining a similar single-task speech recognition performance. Owing to the extremely imbalanced training data distribution, the single-task backchannel prediction model fails to predict any of the backchannel categories, and the proposed multitask approach substantially enhances the backchannel prediction performance. Notably, in the streaming prediction scenario, the performance of backchannel prediction improves by up to 18.7% compared with existing methods.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"46 1","pages":"118-126"},"PeriodicalIF":1.3000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2023-0358","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETRI Journal","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.4218/etrij.2023-0358","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In human conversations, listeners often utilize brief backchannels such as “uh-huh” or “yeah.” Timely backchannels are crucial to understanding and increasing trust among conversational partners. In human–machine conversation systems, users can engage in natural conversations when a conversational agent generates backchannels like a human listener. We propose a method that simultaneously predicts backchannels and recognizes speech in real time. We use a streaming transformer and adopt multitask learning for concurrent backchannel prediction and speech recognition. The experimental results demonstrate the superior performance of our method compared with previous works while maintaining a similar single-task speech recognition performance. Owing to the extremely imbalanced training data distribution, the single-task backchannel prediction model fails to predict any of the backchannel categories, and the proposed multitask approach substantially enhances the backchannel prediction performance. Notably, in the streaming prediction scenario, the performance of backchannel prediction improves by up to 18.7% compared with existing methods.
期刊介绍:
ETRI Journal is an international, peer-reviewed multidisciplinary journal published bimonthly in English. The main focus of the journal is to provide an open forum to exchange innovative ideas and technology in the fields of information, telecommunications, and electronics.
Key topics of interest include high-performance computing, big data analytics, cloud computing, multimedia technology, communication networks and services, wireless communications and mobile computing, material and component technology, as well as security.
With an international editorial committee and experts from around the world as reviewers, ETRI Journal publishes high-quality research papers on the latest and best developments from the global community.