A design approach for class-AB operational amplifier using the gm/ID methodology

IF 1.2 4区 工程技术 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Analog Integrated Circuits and Signal Processing Pub Date : 2024-02-11 DOI:10.1007/s10470-024-02252-5
Chen Chen, Jinxing Cheng, Hongyi Wang, Youyou Fan, Kaikai Wu, Tao Tao, Qingbo Wang, Ai Yu, Weiwei Wen, Youpeng Wu, Yue Zhang
{"title":"A design approach for class-AB operational amplifier using the gm/ID methodology","authors":"Chen Chen,&nbsp;Jinxing Cheng,&nbsp;Hongyi Wang,&nbsp;Youyou Fan,&nbsp;Kaikai Wu,&nbsp;Tao Tao,&nbsp;Qingbo Wang,&nbsp;Ai Yu,&nbsp;Weiwei Wen,&nbsp;Youpeng Wu,&nbsp;Yue Zhang","doi":"10.1007/s10470-024-02252-5","DOIUrl":null,"url":null,"abstract":"<div><p>The primary contribution of this paper is the extension of the g<sub>m</sub>/I<sub>D</sub> design methodology to two-stage operational amplifiers with class-AB output stages. First, the circuit is analyzed from the perspective of the g<sub>m</sub>/I<sub>D</sub> methodology, with a focus on its performance metrics and constraints. Second, to handle optimization targets and constraints automatically, the circuit sizing task is formulated as a single-objective optimization problem, and an optimizer is employed to obtain the temporary solution automatically. Benefiting from the g<sub>m</sub>/I<sub>D</sub> methodology, the gap between analytical equations and circuit simulation is highly reduced. Third, following the temporary solution, a guided fine-tuning method is introduced to further optimize the temporary solution. To demonstrate the effectiveness of this approach, we compared the equation-based method using the square-law model, two simulation-based methods and a commercial tool, Cadence ADE GXL, employing SMIC 55 nm and SMIC 180 nm CMOS technologies. The simulation results confirm the success of the proposed approach, showing that it not only reduces the gap between analytical equations and simulations, but also achieves the best performance metrics.</p></div>","PeriodicalId":7827,"journal":{"name":"Analog Integrated Circuits and Signal Processing","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analog Integrated Circuits and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10470-024-02252-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

The primary contribution of this paper is the extension of the gm/ID design methodology to two-stage operational amplifiers with class-AB output stages. First, the circuit is analyzed from the perspective of the gm/ID methodology, with a focus on its performance metrics and constraints. Second, to handle optimization targets and constraints automatically, the circuit sizing task is formulated as a single-objective optimization problem, and an optimizer is employed to obtain the temporary solution automatically. Benefiting from the gm/ID methodology, the gap between analytical equations and circuit simulation is highly reduced. Third, following the temporary solution, a guided fine-tuning method is introduced to further optimize the temporary solution. To demonstrate the effectiveness of this approach, we compared the equation-based method using the square-law model, two simulation-based methods and a commercial tool, Cadence ADE GXL, employing SMIC 55 nm and SMIC 180 nm CMOS technologies. The simulation results confirm the success of the proposed approach, showing that it not only reduces the gap between analytical equations and simulations, but also achieves the best performance metrics.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 gm/ID 方法的 AB 类运算放大器设计方法
本文的主要贡献在于将 gm/ID 设计方法扩展到具有 AB 类输出级的两级运算放大器。首先,从 gm/ID 方法的角度对电路进行分析,重点关注其性能指标和约束条件。其次,为了自动处理优化目标和约束条件,将电路选型任务表述为单目标优化问题,并采用优化器自动获取临时解决方案。得益于 gm/ID 方法,分析方程与电路仿真之间的差距大大缩小。第三,在临时解决方案之后,引入了一种引导微调方法,以进一步优化临时解决方案。为了证明这种方法的有效性,我们采用中芯国际 55 纳米和中芯国际 180 纳米 CMOS 技术,比较了使用平方律模型的基于方程的方法、两种基于仿真的方法和一种商业工具 Cadence ADE GXL。仿真结果证实了所提方法的成功,表明它不仅缩小了分析方程与仿真之间的差距,而且实现了最佳性能指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Analog Integrated Circuits and Signal Processing
Analog Integrated Circuits and Signal Processing 工程技术-工程:电子与电气
CiteScore
0.30
自引率
7.10%
发文量
141
审稿时长
7.3 months
期刊介绍: Analog Integrated Circuits and Signal Processing is an archival peer reviewed journal dedicated to the design and application of analog, radio frequency (RF), and mixed signal integrated circuits (ICs) as well as signal processing circuits and systems. It features both new research results and tutorial views and reflects the large volume of cutting-edge research activity in the worldwide field today. A partial list of topics includes analog and mixed signal interface circuits and systems; analog and RFIC design; data converters; active-RC, switched-capacitor, and continuous-time integrated filters; mixed analog/digital VLSI systems; wireless radio transceivers; clock and data recovery circuits; and high speed optoelectronic circuits and systems.
期刊最新文献
FPGA-based implementation and verification of hybrid security algorithm for NoC architecture A multiple resonant microstrip patch heart shape antenna for satellite and Wi-Fi communication Low power content addressable memory using common match line scheme for high performance processors An ultra-low power fully CMOS sub-bandgap reference in weak inversion Secure and reliable communication using memristor-based chaotic circuit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1