{"title":"Harnessing solvation-guided engineering to enhance deep eutectic solvent resistance and thermostability in enzymes†","authors":"","doi":"10.1039/d3gc04933g","DOIUrl":null,"url":null,"abstract":"<div><p>Deep eutectic solvents (DESs) are gaining rapid prominence in numerous biocatalysis processes due to their green characteristics, biodegradability, low cost, and simple preparation compared to harsh organic solvents and toxic ionic liquids. However, natural enzymes tend to show activity reduction, even inactivation in the presence of many DESs. Here, we present the first rational design approach to achieve enzymes resistant to both DESs and high temperatures. Using the interaction pattern between DESs and BSLA (<em>Bacillus subtilis</em> lipase A, our model enzyme) derived from all-atom molecular dynamics (MD) simulations, we formulated a solvation-guided engineering strategy. This was established after assessing 33 structural, solvation, and energy observables. We rationally designed and experimentally tested 36 single substitutions, of which 28 (a 77.78% success rate) exhibited improvements in at least two DES cosolvents: choline chloride (ChCl) : acetamide, tetrabutylphosphonium bromide (TBPB) : ethylene glycol (EG), and ChCl : EG. Additionally, through stepwise recombination, we identified two robust BSLA variants, D64H/R107L/E171Y and D64H/R142L, showing stability improvements of up to 4.4-fold and 3.2-fold in three DESs and at 50 °C, respectively. Further MD studies demonstrated that (i) the restricted overall structure but fine-tuned local flexibility and (ii) increased water but decreased DES molecules at substituted sites are two main factors contributing to the enhanced multiple DES resistance. Overall, solvation-guided engineering offers an efficient and rational approach for designing lipases tolerant to DES cosolvents and elevated temperatures, with a considerable potential for adaptation to other enzymes.</p></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":null,"pages":null},"PeriodicalIF":9.3000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926224006800","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Deep eutectic solvents (DESs) are gaining rapid prominence in numerous biocatalysis processes due to their green characteristics, biodegradability, low cost, and simple preparation compared to harsh organic solvents and toxic ionic liquids. However, natural enzymes tend to show activity reduction, even inactivation in the presence of many DESs. Here, we present the first rational design approach to achieve enzymes resistant to both DESs and high temperatures. Using the interaction pattern between DESs and BSLA (Bacillus subtilis lipase A, our model enzyme) derived from all-atom molecular dynamics (MD) simulations, we formulated a solvation-guided engineering strategy. This was established after assessing 33 structural, solvation, and energy observables. We rationally designed and experimentally tested 36 single substitutions, of which 28 (a 77.78% success rate) exhibited improvements in at least two DES cosolvents: choline chloride (ChCl) : acetamide, tetrabutylphosphonium bromide (TBPB) : ethylene glycol (EG), and ChCl : EG. Additionally, through stepwise recombination, we identified two robust BSLA variants, D64H/R107L/E171Y and D64H/R142L, showing stability improvements of up to 4.4-fold and 3.2-fold in three DESs and at 50 °C, respectively. Further MD studies demonstrated that (i) the restricted overall structure but fine-tuned local flexibility and (ii) increased water but decreased DES molecules at substituted sites are two main factors contributing to the enhanced multiple DES resistance. Overall, solvation-guided engineering offers an efficient and rational approach for designing lipases tolerant to DES cosolvents and elevated temperatures, with a considerable potential for adaptation to other enzymes.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.