WARP: The Data Reduction Pipeline for the WINERED Spectrograph

IF 3.3 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Publications of the Astronomical Society of the Pacific Pub Date : 2024-02-01 DOI:10.1088/1538-3873/ad1b38
Satoshi Hamano, Yuji Ikeda, Shogo Otsubo, Haruki Katoh, Kei Fukue, Noriyuki Matsunaga, Daisuke Taniguchi, Hideyo Kawakita, Keiichi Takenaka, Sohei Kondo, Hiroaki Sameshima
{"title":"WARP: The Data Reduction Pipeline for the WINERED Spectrograph","authors":"Satoshi Hamano, Yuji Ikeda, Shogo Otsubo, Haruki Katoh, Kei Fukue, Noriyuki Matsunaga, Daisuke Taniguchi, Hideyo Kawakita, Keiichi Takenaka, Sohei Kondo, Hiroaki Sameshima","doi":"10.1088/1538-3873/ad1b38","DOIUrl":null,"url":null,"abstract":"We present a data reduction pipeline written in Python for data obtained with the near-infrared cross-dispersed echelle spectrograph, WINERED, which yields a 0.91–1.35 <italic toggle=\"yes\">μ</italic>m spectrum with the resolving power of <inline-formula>\n<tex-math>\n<?CDATA ${R}_{\\max }\\equiv \\lambda /{\\rm{\\Delta }}\\lambda ={\\rm{28,000}}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mrow><mml:mi>R</mml:mi></mml:mrow><mml:mrow><mml:mi>max</mml:mi></mml:mrow></mml:msub><mml:mo>≡</mml:mo><mml:mi>λ</mml:mi><mml:mrow><mml:mo stretchy=\"true\">/</mml:mo></mml:mrow><mml:mi mathvariant=\"normal\">Δ</mml:mi><mml:mi>λ</mml:mi><mml:mo>=</mml:mo><mml:mi mathvariant=\"normal\">28,000</mml:mi></mml:math>\n<inline-graphic xlink:href=\"paspad1b38ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> or 70,000 depending on the observing mode. The pipeline was developed to efficiently extract the spectrum from the raw data with high quality. It comprises two modes: the calibration and the science mode. The calibration mode automatically produces the flat-fielding image, bad pixel map, echellogram distortion map and the dispersion solution from the set of the calibration data. Using calibration images and parameters, the science data of astronomical objects can be reduced automatically using the science mode. The science mode is also used for the real-time quick look at the data during observations. An example of the spectra reduced with WARP is presented. The effect of the highly inclined slit image on the spectral resolution is discussed.","PeriodicalId":20820,"journal":{"name":"Publications of the Astronomical Society of the Pacific","volume":"77 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Astronomical Society of the Pacific","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1538-3873/ad1b38","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a data reduction pipeline written in Python for data obtained with the near-infrared cross-dispersed echelle spectrograph, WINERED, which yields a 0.91–1.35 μm spectrum with the resolving power of Rmaxλ/Δλ=28,000 or 70,000 depending on the observing mode. The pipeline was developed to efficiently extract the spectrum from the raw data with high quality. It comprises two modes: the calibration and the science mode. The calibration mode automatically produces the flat-fielding image, bad pixel map, echellogram distortion map and the dispersion solution from the set of the calibration data. Using calibration images and parameters, the science data of astronomical objects can be reduced automatically using the science mode. The science mode is also used for the real-time quick look at the data during observations. An example of the spectra reduced with WARP is presented. The effect of the highly inclined slit image on the spectral resolution is discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
WARP:WINERED 摄谱仪的数据还原管道
我们介绍了一个用 Python 编写的数据缩减管道,该管道用于处理利用近红外交叉分散梯度光谱仪 WINERED 获得的数据,该光谱仪可产生 0.91-1.35 μm 光谱,根据观测模式的不同,其分辨力为 Rmax≡λ/Δλ=28,000 或 70,000。开发该管道是为了从原始数据中高效提取高质量的光谱。它包括两种模式:校准模式和科学模式。校准模式从校准数据集自动生成平场图像、坏像素图、椭偏图畸变图和色散解。利用校准图像和参数,可以在科学模式下自动缩减天体的科学数据。科学模式还可用于在观测过程中实时快速查看数据。下面介绍一个利用 WARP 缩小光谱的例子。讨论了高倾斜狭缝图像对光谱分辨率的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Publications of the Astronomical Society of the Pacific
Publications of the Astronomical Society of the Pacific 地学天文-天文与天体物理
CiteScore
6.70
自引率
5.70%
发文量
103
审稿时长
4-8 weeks
期刊介绍: The Publications of the Astronomical Society of the Pacific (PASP), the technical journal of the Astronomical Society of the Pacific (ASP), has been published regularly since 1889, and is an integral part of the ASP''s mission to advance the science of astronomy and disseminate astronomical information. The journal provides an outlet for astronomical results of a scientific nature and serves to keep readers in touch with current astronomical research. It contains refereed research and instrumentation articles, invited and contributed reviews, tutorials, and dissertation summaries.
期刊最新文献
The Valuable Long-period Cluster Cepheid KQ Scorpii and other Calibration Candidates A New Parameterization for Finding Solutions for Microlensing Exoplanet Light Curves Multi-amplifier Sensing Charge-coupled Devices for Next Generation Spectroscopy Ejecta Masses in Type Ia Supernovae—Implications for the Progenitor and the Explosion Scenario* * Based in part on observations obtained with the Hobby-Eberly Telescope (HET), which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Ludwig-Maximillians-Universitaet Muenchen, and Georg-August Universitaet Goettingen. The HET is named in honor of its principal benefactors, William P. Hobby and Robert E. Eberly. Physical Properties of Embedded Clusters in ATLASGAL Clumps with H ii Regions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1