Non-contact vehicle weight identification method based on explainable machine learning models and computer vision

IF 3.6 2区 工程技术 Q1 ENGINEERING, CIVIL Journal of Civil Structural Health Monitoring Pub Date : 2024-02-05 DOI:10.1007/s13349-023-00757-7
Jinpeng Feng, Kang Gao, Haowei Zhang, Weigang Zhao, Gang Wu, Zewen Zhu
{"title":"Non-contact vehicle weight identification method based on explainable machine learning models and computer vision","authors":"Jinpeng Feng, Kang Gao, Haowei Zhang, Weigang Zhao, Gang Wu, Zewen Zhu","doi":"10.1007/s13349-023-00757-7","DOIUrl":null,"url":null,"abstract":"<p>This paper first explores an alternative non-contact method based on computer vision and explainable machine learning (EML) models to identify and predict vehicle overload cost-effectively. First, 1108 sets of data are extracted from traditional contact measurements, non-contact measurements (Optical Character Recognition and thermal imaging), and literature collection to establish a novel and comprehensive database. The missing value imputation and the randomized search are then selected to find the optimal ML model for further analysis. Moreover, two typical theoretical and five ML models are adopted to evaluate the optimal model’s performance. Finally, the sHapley Additive exPlanations (SHAP) is applied to interpret the influence factors of the optimal ML model. The results indicate that the divided length between the tire and the ground is the most significant input feature, followed by the tire’s inflation pressure, the section height of tire, and the radius. Finally, the proposed model has great application potential for enhancing the efficiency of non-contact vehicle weight-in-motion (WIM) weighing. </p>","PeriodicalId":48582,"journal":{"name":"Journal of Civil Structural Health Monitoring","volume":"13 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Civil Structural Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13349-023-00757-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper first explores an alternative non-contact method based on computer vision and explainable machine learning (EML) models to identify and predict vehicle overload cost-effectively. First, 1108 sets of data are extracted from traditional contact measurements, non-contact measurements (Optical Character Recognition and thermal imaging), and literature collection to establish a novel and comprehensive database. The missing value imputation and the randomized search are then selected to find the optimal ML model for further analysis. Moreover, two typical theoretical and five ML models are adopted to evaluate the optimal model’s performance. Finally, the sHapley Additive exPlanations (SHAP) is applied to interpret the influence factors of the optimal ML model. The results indicate that the divided length between the tire and the ground is the most significant input feature, followed by the tire’s inflation pressure, the section height of tire, and the radius. Finally, the proposed model has great application potential for enhancing the efficiency of non-contact vehicle weight-in-motion (WIM) weighing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于可解释机器学习模型和计算机视觉的非接触式车辆重量识别方法
本文首先探讨了一种基于计算机视觉和可解释机器学习(EML)模型的替代性非接触方法,以经济有效地识别和预测车辆超载。首先,从传统的接触式测量、非接触式测量(光学字符识别和热成像)和文献收集中提取了 1108 组数据,建立了一个新颖而全面的数据库。然后,通过缺失值估算和随机搜索,找到最优的 ML 模型进行进一步分析。此外,还采用了两个典型理论模型和五个 ML 模型来评估最优模型的性能。最后,应用 sHapley Additive exPlanations(SHAP)来解释最优 ML 模型的影响因素。结果表明,轮胎与地面之间的分隔长度是最重要的输入特征,其次是轮胎充气压力、轮胎截面高度和半径。最后,所提出的模型在提高非接触式车辆运动称重(WIM)效率方面具有巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Civil Structural Health Monitoring
Journal of Civil Structural Health Monitoring Engineering-Safety, Risk, Reliability and Quality
CiteScore
8.10
自引率
11.40%
发文量
105
期刊介绍: The Journal of Civil Structural Health Monitoring (JCSHM) publishes articles to advance the understanding and the application of health monitoring methods for the condition assessment and management of civil infrastructure systems. JCSHM serves as a focal point for sharing knowledge and experience in technologies impacting the discipline of Civionics and Civil Structural Health Monitoring, especially in terms of load capacity ratings and service life estimation.
期刊最新文献
Development and implementation of medium-fidelity physics-based model for hybrid digital twin-based damage identification of piping structures Innovated bridge health diagnosis model using bridge critical frequency ratio R–C–C fusion classifier for automatic damage detection of heritage building using 3D laser scanning An AIoT system for real-time monitoring and forecasting of railway temperature Environmental effects on the experimental modal parameters of masonry buildings: experiences from the Italian Seismic Observatory of Structures (OSS) network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1