Jinpeng Feng, Kang Gao, Haowei Zhang, Weigang Zhao, Gang Wu, Zewen Zhu
{"title":"Non-contact vehicle weight identification method based on explainable machine learning models and computer vision","authors":"Jinpeng Feng, Kang Gao, Haowei Zhang, Weigang Zhao, Gang Wu, Zewen Zhu","doi":"10.1007/s13349-023-00757-7","DOIUrl":null,"url":null,"abstract":"<p>This paper first explores an alternative non-contact method based on computer vision and explainable machine learning (EML) models to identify and predict vehicle overload cost-effectively. First, 1108 sets of data are extracted from traditional contact measurements, non-contact measurements (Optical Character Recognition and thermal imaging), and literature collection to establish a novel and comprehensive database. The missing value imputation and the randomized search are then selected to find the optimal ML model for further analysis. Moreover, two typical theoretical and five ML models are adopted to evaluate the optimal model’s performance. Finally, the sHapley Additive exPlanations (SHAP) is applied to interpret the influence factors of the optimal ML model. The results indicate that the divided length between the tire and the ground is the most significant input feature, followed by the tire’s inflation pressure, the section height of tire, and the radius. Finally, the proposed model has great application potential for enhancing the efficiency of non-contact vehicle weight-in-motion (WIM) weighing. </p>","PeriodicalId":48582,"journal":{"name":"Journal of Civil Structural Health Monitoring","volume":"13 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Civil Structural Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13349-023-00757-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper first explores an alternative non-contact method based on computer vision and explainable machine learning (EML) models to identify and predict vehicle overload cost-effectively. First, 1108 sets of data are extracted from traditional contact measurements, non-contact measurements (Optical Character Recognition and thermal imaging), and literature collection to establish a novel and comprehensive database. The missing value imputation and the randomized search are then selected to find the optimal ML model for further analysis. Moreover, two typical theoretical and five ML models are adopted to evaluate the optimal model’s performance. Finally, the sHapley Additive exPlanations (SHAP) is applied to interpret the influence factors of the optimal ML model. The results indicate that the divided length between the tire and the ground is the most significant input feature, followed by the tire’s inflation pressure, the section height of tire, and the radius. Finally, the proposed model has great application potential for enhancing the efficiency of non-contact vehicle weight-in-motion (WIM) weighing.
本文首先探讨了一种基于计算机视觉和可解释机器学习(EML)模型的替代性非接触方法,以经济有效地识别和预测车辆超载。首先,从传统的接触式测量、非接触式测量(光学字符识别和热成像)和文献收集中提取了 1108 组数据,建立了一个新颖而全面的数据库。然后,通过缺失值估算和随机搜索,找到最优的 ML 模型进行进一步分析。此外,还采用了两个典型理论模型和五个 ML 模型来评估最优模型的性能。最后,应用 sHapley Additive exPlanations(SHAP)来解释最优 ML 模型的影响因素。结果表明,轮胎与地面之间的分隔长度是最重要的输入特征,其次是轮胎充气压力、轮胎截面高度和半径。最后,所提出的模型在提高非接触式车辆运动称重(WIM)效率方面具有巨大的应用潜力。
期刊介绍:
The Journal of Civil Structural Health Monitoring (JCSHM) publishes articles to advance the understanding and the application of health monitoring methods for the condition assessment and management of civil infrastructure systems.
JCSHM serves as a focal point for sharing knowledge and experience in technologies impacting the discipline of Civionics and Civil Structural Health Monitoring, especially in terms of load capacity ratings and service life estimation.