{"title":"Dynamically-optimal models of atmospheric motion","authors":"Alexander Voronovich","doi":"10.5194/egusphere-2024-303","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> A derivation of a dynamical core for the dry atmosphere in the absence of dissipative processes based on the least action (i.e., Hamilton’s) principle is presented. This approach can be considered the finite-element method applied to the calculation and minimization of the action. The algorithm possesses the following characteristic features: (1) For a given set of grid points and a given forward operator the algorithm ensures through the minimization of action maximal closeness (in a broad sense) of the evolution of the discrete system to the motion of the continuous atmosphere (a dynamically-optimal algorithm); (2) The grid points can be irregularly spaced allowing for variable spatial resolution; (3) The spatial resolution can be adjusted locally while executing calculations; (4) By using a set of tetrahedra as finite elements the algorithm ensures a better representation of the topography (piecewise linear rather than staircase); (5) The algorithm automatically calculates the evolution of passive tracers by following the trajectories of the fluid particles, which ensures that all <em>a priori</em> required tracer properties are satisfied. For testing purposes, the algorithm is realized in 2D, and a numerical example representing a convection event is presented.","PeriodicalId":54714,"journal":{"name":"Nonlinear Processes in Geophysics","volume":"72 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Processes in Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-303","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. A derivation of a dynamical core for the dry atmosphere in the absence of dissipative processes based on the least action (i.e., Hamilton’s) principle is presented. This approach can be considered the finite-element method applied to the calculation and minimization of the action. The algorithm possesses the following characteristic features: (1) For a given set of grid points and a given forward operator the algorithm ensures through the minimization of action maximal closeness (in a broad sense) of the evolution of the discrete system to the motion of the continuous atmosphere (a dynamically-optimal algorithm); (2) The grid points can be irregularly spaced allowing for variable spatial resolution; (3) The spatial resolution can be adjusted locally while executing calculations; (4) By using a set of tetrahedra as finite elements the algorithm ensures a better representation of the topography (piecewise linear rather than staircase); (5) The algorithm automatically calculates the evolution of passive tracers by following the trajectories of the fluid particles, which ensures that all a priori required tracer properties are satisfied. For testing purposes, the algorithm is realized in 2D, and a numerical example representing a convection event is presented.
期刊介绍:
Nonlinear Processes in Geophysics (NPG) is an international, inter-/trans-disciplinary, non-profit journal devoted to breaking the deadlocks often faced by standard approaches in Earth and space sciences. It therefore solicits disruptive and innovative concepts and methodologies, as well as original applications of these to address the ubiquitous complexity in geoscience systems, and in interacting social and biological systems. Such systems are nonlinear, with responses strongly non-proportional to perturbations, and show an associated extreme variability across scales.