Lu Li, Yongjiu Dai, Zhongwang Wei, Wei Shangguan, Nan Wei, Yonggen Zhang, Qingliang Li, Xian-Xiang Li
{"title":"Enhancing Deep Learning Soil Moisture Forecasting Models by Integrating Physics-based Models","authors":"Lu Li, Yongjiu Dai, Zhongwang Wei, Wei Shangguan, Nan Wei, Yonggen Zhang, Qingliang Li, Xian-Xiang Li","doi":"10.1007/s00376-023-3181-8","DOIUrl":null,"url":null,"abstract":"<p>Accurate soil moisture (SM) prediction is critical for understanding hydrological processes. Physics-based (PB) models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient representation of land-surface processes. In addition to PB models, deep learning (DL) models have been widely used in SM predictions recently. However, few pure DL models have notably high success rates due to lacking physical information. Thus, we developed hybrid models to effectively integrate the outputs of PB models into DL models to improve SM predictions. To this end, we first developed a hybrid model based on the attention mechanism to take advantage of PB models at each forecast time scale (<b>attention</b> model). We further built an ensemble model that combined the advantages of different hybrid schemes (<b>ensemble</b> model). We utilized SM forecasts from the Global Forecast System to enhance the convolutional long short-term memory (ConvLSTM) model for 1–16 days of SM predictions. The performances of the proposed hybrid models were investigated and compared with two existing hybrid models. The results showed that the <b>attention</b> model could leverage benefits of PB models and achieved the best predictability of drought events among the different hybrid models. Moreover, the <b>ensemble</b> model performed best among all hybrid models at all forecast time scales and different soil conditions. It is highlighted that the <b>ensemble</b> model outperformed the pure DL model over 79.5% of in situ stations for 16-day predictions. These findings suggest that our proposed hybrid models can adequately exploit the benefits of PB model outputs to aid DL models in making SM predictions.</p>","PeriodicalId":7249,"journal":{"name":"Advances in Atmospheric Sciences","volume":"93 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00376-023-3181-8","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate soil moisture (SM) prediction is critical for understanding hydrological processes. Physics-based (PB) models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient representation of land-surface processes. In addition to PB models, deep learning (DL) models have been widely used in SM predictions recently. However, few pure DL models have notably high success rates due to lacking physical information. Thus, we developed hybrid models to effectively integrate the outputs of PB models into DL models to improve SM predictions. To this end, we first developed a hybrid model based on the attention mechanism to take advantage of PB models at each forecast time scale (attention model). We further built an ensemble model that combined the advantages of different hybrid schemes (ensemble model). We utilized SM forecasts from the Global Forecast System to enhance the convolutional long short-term memory (ConvLSTM) model for 1–16 days of SM predictions. The performances of the proposed hybrid models were investigated and compared with two existing hybrid models. The results showed that the attention model could leverage benefits of PB models and achieved the best predictability of drought events among the different hybrid models. Moreover, the ensemble model performed best among all hybrid models at all forecast time scales and different soil conditions. It is highlighted that the ensemble model outperformed the pure DL model over 79.5% of in situ stations for 16-day predictions. These findings suggest that our proposed hybrid models can adequately exploit the benefits of PB model outputs to aid DL models in making SM predictions.
期刊介绍:
Advances in Atmospheric Sciences, launched in 1984, aims to rapidly publish original scientific papers on the dynamics, physics and chemistry of the atmosphere and ocean. It covers the latest achievements and developments in the atmospheric sciences, including marine meteorology and meteorology-associated geophysics, as well as the theoretical and practical aspects of these disciplines.
Papers on weather systems, numerical weather prediction, climate dynamics and variability, satellite meteorology, remote sensing, air chemistry and the boundary layer, clouds and weather modification, can be found in the journal. Papers describing the application of new mathematics or new instruments are also collected here.