Effect of ambient pressures on laser-induced breakdown spectroscopy signals

IF 6.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Frontiers of Physics Pub Date : 2024-02-07 DOI:10.1007/s11467-023-1380-5
Kaifan Zhang, Weiran Song, Zongyu Hou, Zhe Wang
{"title":"Effect of ambient pressures on laser-induced breakdown spectroscopy signals","authors":"Kaifan Zhang,&nbsp;Weiran Song,&nbsp;Zongyu Hou,&nbsp;Zhe Wang","doi":"10.1007/s11467-023-1380-5","DOIUrl":null,"url":null,"abstract":"<div><p>Laser-induced breakdown spectroscopy (LIBS) is regarded as the future superstar for analytical chemistry and widely applied in various fields. Improving the quality of LIBS signal is fundamental to achieving accurate quantification and large-scale commercialization of LIBS. To propose control methods that improve LIBS signal quality, it is essential to have a comprehensive understanding of the influence of key parameters, such as ambient gas pressure, temperature, and sample temperature on LIBS signals. To date, extensive research has been carried out. However, different researchers often yield significantly different experimental results for LIBS, preventing the formation of consistent conclusions. This greatly prevents the understanding of influencing laws of key parameters and the improvement of LIBS quantitative performance. Taking ambient gas pressure as an example, this paper compares the effects of ambient gas pressure under different optimization conditions, reveals the influence of spatiotemporal window caused by inherent characteristics of LIBS signal sources, i.e., intense temporal changes and spatial non-uniformity of laser-induced plasmas, on the impact patterns of key parameters. From the perspective of plasma spatiotemporal evolution, the paper elucidates the influence patterns of ambient gas pressure on LIBS signals, clarifying seemingly contradictory research results in the literature.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":"19 4","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11467-023-1380-5","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Laser-induced breakdown spectroscopy (LIBS) is regarded as the future superstar for analytical chemistry and widely applied in various fields. Improving the quality of LIBS signal is fundamental to achieving accurate quantification and large-scale commercialization of LIBS. To propose control methods that improve LIBS signal quality, it is essential to have a comprehensive understanding of the influence of key parameters, such as ambient gas pressure, temperature, and sample temperature on LIBS signals. To date, extensive research has been carried out. However, different researchers often yield significantly different experimental results for LIBS, preventing the formation of consistent conclusions. This greatly prevents the understanding of influencing laws of key parameters and the improvement of LIBS quantitative performance. Taking ambient gas pressure as an example, this paper compares the effects of ambient gas pressure under different optimization conditions, reveals the influence of spatiotemporal window caused by inherent characteristics of LIBS signal sources, i.e., intense temporal changes and spatial non-uniformity of laser-induced plasmas, on the impact patterns of key parameters. From the perspective of plasma spatiotemporal evolution, the paper elucidates the influence patterns of ambient gas pressure on LIBS signals, clarifying seemingly contradictory research results in the literature.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环境压力对激光诱导击穿光谱信号的影响
激光诱导击穿光谱(LIBS)被认为是未来分析化学的超级明星,广泛应用于各个领域。提高 LIBS 信号质量是实现精确定量和大规模商业化的基础。要提出提高 LIBS 信号质量的控制方法,必须全面了解环境气体压力、温度和样品温度等关键参数对 LIBS 信号的影响。迄今为止,已经开展了大量研究。然而,不同的研究人员对 LIBS 的实验结果往往大相径庭,无法形成一致的结论。这极大地阻碍了对关键参数影响规律的理解和 LIBS 定量性能的提高。本文以环境气体压力为例,比较了不同优化条件下环境气体压力的影响,揭示了LIBS信号源固有特性(即激光诱导等离子体的强烈时间变化和空间不均匀性)导致的时空窗口对关键参数影响规律的影响。论文从等离子体时空演变的角度,阐明了环境气体压力对 LIBS 信号的影响模式,澄清了文献中看似矛盾的研究成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers of Physics
Frontiers of Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
9.20
自引率
9.30%
发文量
898
审稿时长
6-12 weeks
期刊介绍: Frontiers of Physics is an international peer-reviewed journal dedicated to showcasing the latest advancements and significant progress in various research areas within the field of physics. The journal's scope is broad, covering a range of topics that include: Quantum computation and quantum information Atomic, molecular, and optical physics Condensed matter physics, material sciences, and interdisciplinary research Particle, nuclear physics, astrophysics, and cosmology The journal's mission is to highlight frontier achievements, hot topics, and cross-disciplinary points in physics, facilitating communication and idea exchange among physicists both in China and internationally. It serves as a platform for researchers to share their findings and insights, fostering collaboration and innovation across different areas of physics.
期刊最新文献
Erratum to: Noisy intermediate-scale quantum computers Strong ferroelectricity in one-dimensional materials self-assembled by superatomic metal halide clusters Bayesian method for fitting the low-energy constants in chiral perturbation theory Interlayer ferromagnetic coupling in nonmagnetic elements doped CrI3 thin films Magnon, doublon and quarton excitations in 2D S=1/2 trimerized Heisenberg models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1