Control of the PVTOL with Strong Input Coupling

IF 3.1 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Intelligent & Robotic Systems Pub Date : 2024-02-15 DOI:10.1007/s10846-024-02066-7
Rogelio Lozano, Jhonatan F Eulopa-Hernandez, Sergio Salazar-Cruz
{"title":"Control of the PVTOL with Strong Input Coupling","authors":"Rogelio Lozano, Jhonatan F Eulopa-Hernandez, Sergio Salazar-Cruz","doi":"10.1007/s10846-024-02066-7","DOIUrl":null,"url":null,"abstract":"<p>This paper studies the modeling and control of a Planar Vertical Take-Off and Landing (PVTOL) with steerable thruster. A longitudinal model is obtained using Newton’s second law for the PVTOL which evolves in 3 degrees of freedom and has two control inputs. The aerial vehicle is driven by steerable propulsion controlling its evolution in the vertical plane through the thrust and torque control inputs, which drive the vehicle body and generate a rotation. The obtained model is nonlinear and is significantly different with respect to the well-known PVTOL. For this reason, different control algorithms are presented, and the closed-loop behavior is studied for each of them. The proposed control strategies perform a stationary flight at a desired altitude and control the position of the aerial vehicle. The performance of the proposed control algorithms is tested in numerical simulations.</p>","PeriodicalId":54794,"journal":{"name":"Journal of Intelligent & Robotic Systems","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10846-024-02066-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the modeling and control of a Planar Vertical Take-Off and Landing (PVTOL) with steerable thruster. A longitudinal model is obtained using Newton’s second law for the PVTOL which evolves in 3 degrees of freedom and has two control inputs. The aerial vehicle is driven by steerable propulsion controlling its evolution in the vertical plane through the thrust and torque control inputs, which drive the vehicle body and generate a rotation. The obtained model is nonlinear and is significantly different with respect to the well-known PVTOL. For this reason, different control algorithms are presented, and the closed-loop behavior is studied for each of them. The proposed control strategies perform a stationary flight at a desired altitude and control the position of the aerial vehicle. The performance of the proposed control algorithms is tested in numerical simulations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用强输入耦合控制 PVTOL
本文研究了带有可操纵推进器的平面垂直起降(PVTOL)的建模和控制。利用牛顿第二定律为 PVTOL 建立了一个纵向模型,该模型以 3 个自由度演化,有两个控制输入。飞行器由可操纵推进器驱动,通过推力和扭矩控制输入控制其在垂直面上的演变,从而驱动飞行器机身并产生旋转。获得的模型是非线性的,与著名的 PVTOL 有很大不同。因此,提出了不同的控制算法,并对每种算法的闭环行为进行了研究。所提出的控制策略在所需高度执行静态飞行,并控制飞行器的位置。通过数值模拟测试了所提控制算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Intelligent & Robotic Systems
Journal of Intelligent & Robotic Systems 工程技术-机器人学
CiteScore
7.00
自引率
9.10%
发文量
219
审稿时长
6 months
期刊介绍: The Journal of Intelligent and Robotic Systems bridges the gap between theory and practice in all areas of intelligent systems and robotics. It publishes original, peer reviewed contributions from initial concept and theory to prototyping to final product development and commercialization. On the theoretical side, the journal features papers focusing on intelligent systems engineering, distributed intelligence systems, multi-level systems, intelligent control, multi-robot systems, cooperation and coordination of unmanned vehicle systems, etc. On the application side, the journal emphasizes autonomous systems, industrial robotic systems, multi-robot systems, aerial vehicles, mobile robot platforms, underwater robots, sensors, sensor-fusion, and sensor-based control. Readers will also find papers on real applications of intelligent and robotic systems (e.g., mechatronics, manufacturing, biomedical, underwater, humanoid, mobile/legged robot and space applications, etc.).
期刊最新文献
UAV Routing for Enhancing the Performance of a Classifier-in-the-loop DFT-VSLAM: A Dynamic Optical Flow Tracking VSLAM Method Design and Development of a Robust Control Platform for a 3-Finger Robotic Gripper Using EMG-Derived Hand Muscle Signals in NI LabVIEW Neural Network-based Adaptive Finite-time Control for 2-DOF Helicopter Systems with Prescribed Performance and Input Saturation Six-Degree-of-Freedom Pose Estimation Method for Multi-Source Feature Points Based on Fully Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1