Hui Bi, Jian Zhang, Xiaowei Wang, Shuangyin Liu, Zhijia Zhao, Tao Zou
{"title":"Neural Network-based Adaptive Finite-time Control for 2-DOF Helicopter Systems with Prescribed Performance and Input Saturation","authors":"Hui Bi, Jian Zhang, Xiaowei Wang, Shuangyin Liu, Zhijia Zhao, Tao Zou","doi":"10.1007/s10846-024-02165-5","DOIUrl":null,"url":null,"abstract":"<p>In this study, we propose an adaptive neural network (NN) control approach for a 2-DOF helicopter system characterized by finite-time prescribed performance and input saturation. Initially, the NN is utilized to estimate the system’s uncertainty. Subsequently, a novel performance function with finite-time attributes is formulated to ensure that the system’s tracking error converges to a narrow margin within a predefined time span. Furthermore, adaptive parameters are integrated to address the inherent input saturation within the system. The boundedness of the system is then demonstrated through stability analysis employing the Lyapunov function. Finally, the effectiveness of the control strategy delineated in this investigation is validated through simulations and experiments.</p>","PeriodicalId":54794,"journal":{"name":"Journal of Intelligent & Robotic Systems","volume":"2011 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10846-024-02165-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we propose an adaptive neural network (NN) control approach for a 2-DOF helicopter system characterized by finite-time prescribed performance and input saturation. Initially, the NN is utilized to estimate the system’s uncertainty. Subsequently, a novel performance function with finite-time attributes is formulated to ensure that the system’s tracking error converges to a narrow margin within a predefined time span. Furthermore, adaptive parameters are integrated to address the inherent input saturation within the system. The boundedness of the system is then demonstrated through stability analysis employing the Lyapunov function. Finally, the effectiveness of the control strategy delineated in this investigation is validated through simulations and experiments.
期刊介绍:
The Journal of Intelligent and Robotic Systems bridges the gap between theory and practice in all areas of intelligent systems and robotics. It publishes original, peer reviewed contributions from initial concept and theory to prototyping to final product development and commercialization.
On the theoretical side, the journal features papers focusing on intelligent systems engineering, distributed intelligence systems, multi-level systems, intelligent control, multi-robot systems, cooperation and coordination of unmanned vehicle systems, etc.
On the application side, the journal emphasizes autonomous systems, industrial robotic systems, multi-robot systems, aerial vehicles, mobile robot platforms, underwater robots, sensors, sensor-fusion, and sensor-based control. Readers will also find papers on real applications of intelligent and robotic systems (e.g., mechatronics, manufacturing, biomedical, underwater, humanoid, mobile/legged robot and space applications, etc.).