Laura A. Martinho, João M. B. Calvalcanti, José L. S. Pio, Felipe G. Oliveira
{"title":"Diving into Clarity: Restoring Underwater Images using Deep Learning","authors":"Laura A. Martinho, João M. B. Calvalcanti, José L. S. Pio, Felipe G. Oliveira","doi":"10.1007/s10846-024-02065-8","DOIUrl":null,"url":null,"abstract":"<p>In this paper we propose a learning-based restoration approach to learn the optimal parameters for enhancing the quality of different types of underwater images and apply a set of intensity transformation techniques to process raw underwater images. The methodology comprises two steps. Firstly, a Convolutional Neural Network (CNN) Regression model is employed to learn enhancing parameters for each underwater image type. Trained on a diverse dataset, the CNN captures complex relationships, enabling generalization to various underwater conditions. Secondly, we apply intensity transformation techniques to raw underwater images. These transformations collectively compensate for visual information loss due to underwater degradation, enhancing overall image quality. In order to evaluate the performance of our proposed approach, we conducted qualitative and quantitative experiments using well-known underwater image datasets (U45 and UIEB), and using the proposed challenging dataset composed by 276 underwater images from the Amazon region (AUID). The results demonstrate that our approach achieves an impressive accuracy rate in different underwater image datasets. For U45 and UIEB datasets, regarding PSNR and SSIM quality metrics, we achieved 26.967, 0.847, 27.299 and 0.793, respectively. Meanwhile, the best comparison techniques achieved 26.879, 0.831, 27.157 and 0.788, respectively.</p>","PeriodicalId":54794,"journal":{"name":"Journal of Intelligent & Robotic Systems","volume":"39 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10846-024-02065-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we propose a learning-based restoration approach to learn the optimal parameters for enhancing the quality of different types of underwater images and apply a set of intensity transformation techniques to process raw underwater images. The methodology comprises two steps. Firstly, a Convolutional Neural Network (CNN) Regression model is employed to learn enhancing parameters for each underwater image type. Trained on a diverse dataset, the CNN captures complex relationships, enabling generalization to various underwater conditions. Secondly, we apply intensity transformation techniques to raw underwater images. These transformations collectively compensate for visual information loss due to underwater degradation, enhancing overall image quality. In order to evaluate the performance of our proposed approach, we conducted qualitative and quantitative experiments using well-known underwater image datasets (U45 and UIEB), and using the proposed challenging dataset composed by 276 underwater images from the Amazon region (AUID). The results demonstrate that our approach achieves an impressive accuracy rate in different underwater image datasets. For U45 and UIEB datasets, regarding PSNR and SSIM quality metrics, we achieved 26.967, 0.847, 27.299 and 0.793, respectively. Meanwhile, the best comparison techniques achieved 26.879, 0.831, 27.157 and 0.788, respectively.
期刊介绍:
The Journal of Intelligent and Robotic Systems bridges the gap between theory and practice in all areas of intelligent systems and robotics. It publishes original, peer reviewed contributions from initial concept and theory to prototyping to final product development and commercialization.
On the theoretical side, the journal features papers focusing on intelligent systems engineering, distributed intelligence systems, multi-level systems, intelligent control, multi-robot systems, cooperation and coordination of unmanned vehicle systems, etc.
On the application side, the journal emphasizes autonomous systems, industrial robotic systems, multi-robot systems, aerial vehicles, mobile robot platforms, underwater robots, sensors, sensor-fusion, and sensor-based control. Readers will also find papers on real applications of intelligent and robotic systems (e.g., mechatronics, manufacturing, biomedical, underwater, humanoid, mobile/legged robot and space applications, etc.).