Upscaling Plasma-Based CO2 Conversion: Case Study of a Multi-Reactor Gliding Arc Plasmatron

IF 4.3 Q2 ENGINEERING, CHEMICAL ACS Engineering Au Pub Date : 2024-02-14 DOI:10.1021/acsengineeringau.3c00067
Colin O’Modhrain, Georgi Trenchev, Yury Gorbanev* and Annemie Bogaerts, 
{"title":"Upscaling Plasma-Based CO2 Conversion: Case Study of a Multi-Reactor Gliding Arc Plasmatron","authors":"Colin O’Modhrain,&nbsp;Georgi Trenchev,&nbsp;Yury Gorbanev* and Annemie Bogaerts,&nbsp;","doi":"10.1021/acsengineeringau.3c00067","DOIUrl":null,"url":null,"abstract":"<p >Atmospheric pressure plasmas have shifted in recent years from being a burgeoning research field in the academic setting to an actively investigated technology in the chemical, oil, and environmental industries. This is largely driven by the climate change mitigation efforts, as well as the evident pathways of value creation by converting greenhouse gases (such as CO<sub>2</sub>) into useful chemical feedstock. Currently, most high technology readiness level (TRL) plasma-based technologies are based on volumetric and power-based scaling of thermal plasma systems, which results in large capital investment and regular maintenance costs. This work investigates bringing a quasi-thermal (so-called “warm”) plasma setup, namely, a gliding arc plasmatron, from a lab-scale to a pilot-scale capacity with an increase in throughput capacity by a factor of 10. The method of scaling is the parallelization of plasmatron reactors within a single housing, with the aim of maintaining a warm plasma regime while simultaneously improving build cost and efficiency (compared to separate reactors operating in parallel). Special attention is also given to the safety and control features implemented in the setup, a key component required for integration into industrial systems. The performance of the multi-reactor gliding arc plasmatron (MRGAP) reactor is investigated, focusing on the influence of flow rate and the number of active reactors. The location of active reactors was deemed to have a negligible effect on the monitored metrics of conversion, energy efficiency, and energy cost. The optimum operating conditions were found to be with the most active reactors (five) at the highest investigated flow rate (80 L/min). Analysis of results suggests that an optimum conversion (9%) and plug power-based energy efficiency (19%) can be maintained at a specific energy input (SEI) around 5.3 kJ/L (or 1 eV/molecule). The concept of parallelization of plasmatron reactors within a singular housing was demonstrated to be a viable method for scaling up from a lab-scale to a prototype-scale device, with performance analysis suggesting that increasing the power (through adding more reactor channels) and total flow rate, while maintaining an SEI around 5.3 or 4.2 kJ/L, i.e., 1.3 or 1 eV/molecule (based on plug power and plasma-deposited power, respectively), can result in increased conversion rate without sacrificing absolute conversion or energy efficiency.</p>","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":"4 3","pages":"333–344"},"PeriodicalIF":4.3000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.3c00067","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Engineering Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsengineeringau.3c00067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Atmospheric pressure plasmas have shifted in recent years from being a burgeoning research field in the academic setting to an actively investigated technology in the chemical, oil, and environmental industries. This is largely driven by the climate change mitigation efforts, as well as the evident pathways of value creation by converting greenhouse gases (such as CO2) into useful chemical feedstock. Currently, most high technology readiness level (TRL) plasma-based technologies are based on volumetric and power-based scaling of thermal plasma systems, which results in large capital investment and regular maintenance costs. This work investigates bringing a quasi-thermal (so-called “warm”) plasma setup, namely, a gliding arc plasmatron, from a lab-scale to a pilot-scale capacity with an increase in throughput capacity by a factor of 10. The method of scaling is the parallelization of plasmatron reactors within a single housing, with the aim of maintaining a warm plasma regime while simultaneously improving build cost and efficiency (compared to separate reactors operating in parallel). Special attention is also given to the safety and control features implemented in the setup, a key component required for integration into industrial systems. The performance of the multi-reactor gliding arc plasmatron (MRGAP) reactor is investigated, focusing on the influence of flow rate and the number of active reactors. The location of active reactors was deemed to have a negligible effect on the monitored metrics of conversion, energy efficiency, and energy cost. The optimum operating conditions were found to be with the most active reactors (five) at the highest investigated flow rate (80 L/min). Analysis of results suggests that an optimum conversion (9%) and plug power-based energy efficiency (19%) can be maintained at a specific energy input (SEI) around 5.3 kJ/L (or 1 eV/molecule). The concept of parallelization of plasmatron reactors within a singular housing was demonstrated to be a viable method for scaling up from a lab-scale to a prototype-scale device, with performance analysis suggesting that increasing the power (through adding more reactor channels) and total flow rate, while maintaining an SEI around 5.3 or 4.2 kJ/L, i.e., 1.3 or 1 eV/molecule (based on plug power and plasma-deposited power, respectively), can result in increased conversion rate without sacrificing absolute conversion or energy efficiency.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
等离子体二氧化碳转化技术的升级:多反应器滑动电弧等离子体加速器案例研究
近年来,大气压力等离子体已从一个新兴的学术研究领域转变为化工、石油和环保行业积极研究的技术。这主要是由于减缓气候变化的努力,以及通过将温室气体(如二氧化碳)转化为有用的化学原料来创造价值的明显途径。目前,大多数基于等离子体的高技术就绪水平(TRL)技术都是基于热等离子体系统的体积和功率扩展,这导致了大量的资本投资和定期维护成本。这项工作研究了如何将一个准热(所谓的 "温")等离子体装置,即滑弧等离子体加速器,从实验室规模提升到中试规模,并将吞吐能力提高 10 倍。扩大规模的方法是将等离子体加速器反应器并联在一个外壳内,目的是在保持暖等离子体状态的同时,提高建造成本和效率(与并联运行的独立反应器相比)。此外,还特别关注在装置中实施的安全和控制功能,这是集成到工业系统中所需的关键组成部分。对多反应器滑弧净离子加速器(MRGAP)反应器的性能进行了研究,重点是流速和有源反应器数量的影响。主动反应器的位置被认为对转换、能效和能源成本等监测指标的影响微乎其微。最佳运行条件是在调查的最高流速(80 升/分钟)下有最多的活性反应器(5 个)。结果分析表明,在比能量输入(SEI)约为 5.3 kJ/L(或 1 eV/分子)的条件下,可以保持最佳转换率(9%)和基于插塞功率的能效(19%)。性能分析表明,增加功率(通过增加更多反应器通道)和总流速,同时保持 5.3 或 4.2 kJ/L 左右的 SEI,即 1.3 或 1 eV/分子(分别基于插塞功率和等离子体沉积功率),可以在不牺牲绝对转换率或能效的情况下提高转换率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Engineering Au
ACS Engineering Au 化学工程技术-
自引率
0.00%
发文量
0
期刊介绍: )ACS Engineering Au is an open access journal that reports significant advances in chemical engineering applied chemistry and energy covering fundamentals processes and products. The journal's broad scope includes experimental theoretical mathematical computational chemical and physical research from academic and industrial settings. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Fundamental research in such areas as thermodynamics transport phenomena (flow mixing mass & heat transfer) chemical reaction kinetics and engineering catalysis separations interfacial phenomena and materialsProcess design development and intensification (e.g. process technologies for chemicals and materials synthesis and design methods process intensification multiphase reactors scale-up systems analysis process control data correlation schemes modeling machine learning Artificial Intelligence)Product research and development involving chemical and engineering aspects (e.g. catalysts plastics elastomers fibers adhesives coatings paper membranes lubricants ceramics aerosols fluidic devices intensified process equipment)Energy and fuels (e.g. pre-treatment processing and utilization of renewable energy resources; processing and utilization of fuels; properties and structure or molecular composition of both raw fuels and refined products; fuel cells hydrogen batteries; photochemical fuel and energy production; decarbonization; electrification; microwave; cavitation)Measurement techniques computational models and data on thermo-physical thermodynamic and transport properties of materials and phase equilibrium behaviorNew methods models and tools (e.g. real-time data analytics multi-scale models physics informed machine learning models machine learning enhanced physics-based models soft sensors high-performance computing)
期刊最新文献
Issue Editorial Masthead Issue Publication Information Magnetowetting Dynamics of Compound Droplets Synthesis and Characterization of Dy2O3@TiO2 Nanocomposites for Enhanced Photocatalytic and Electrocatalytic Applications Synthesis and Characterization of Dy2O3@TiO2 Nanocomposites for Enhanced Photocatalytic and Electrocatalytic Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1