Uncertainty-aware human-like driving policy learning with deep Bayesian inverse reinforcement learning

IF 3.6 2区 工程技术 Q2 TRANSPORTATION Transportmetrica A-Transport Science Pub Date : 2024-02-15 DOI:10.1080/23249935.2024.2318621
Di Zeng, Ling Zheng, Xiantong Yang, Yinong Li
{"title":"Uncertainty-aware human-like driving policy learning with deep Bayesian inverse reinforcement learning","authors":"Di Zeng, Ling Zheng, Xiantong Yang, Yinong Li","doi":"10.1080/23249935.2024.2318621","DOIUrl":null,"url":null,"abstract":"The application of deep reinforcement learning in driving policy learning for automated vehicles is limited by the difficulty of designing reward functions. Most existing inverse reinforcement lear...","PeriodicalId":48871,"journal":{"name":"Transportmetrica A-Transport Science","volume":"1 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportmetrica A-Transport Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/23249935.2024.2318621","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

The application of deep reinforcement learning in driving policy learning for automated vehicles is limited by the difficulty of designing reward functions. Most existing inverse reinforcement lear...
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度贝叶斯逆强化学习实现不确定性感知的类人驾驶策略学习
深度强化学习在自动驾驶汽车驾驶策略学习中的应用受到设计奖励函数难度的限制。大多数现有的反强化学习方法都是在...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Transportmetrica A-Transport Science
Transportmetrica A-Transport Science TRANSPORTATION SCIENCE & TECHNOLOGY-
CiteScore
8.10
自引率
12.10%
发文量
55
期刊介绍: Transportmetrica A provides a forum for original discourse in transport science. The international journal''s focus is on the scientific approach to transport research methodology and empirical analysis of moving people and goods. Papers related to all aspects of transportation are welcome. A rigorous peer review that involves editor screening and anonymous refereeing for submitted articles facilitates quality output.
期刊最新文献
Accounting for continuous correlations among alternatives in the context of spatial choice modelling using high resolution mobility data Platoon control and external human–machine interfaces: innovations in pedestrian–autonomous vehicle interactions Predicting metro incident duration using structured data and unstructured text logs Estimating traffic demand of different transportation modes using floating smartphone data Capturing impacts of travel preference on connected autonomous vehicle adoption of risk-averse travellers in multi-modal transportation networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1