Formation of a separation vortex in the vicinity of a dihedral corner configuration at M∞ = 2.27 and α ≤ 6°

IF 0.5 4区 工程技术 Q4 ENGINEERING, AEROSPACE Thermophysics and Aeromechanics Pub Date : 2024-02-13 DOI:10.1134/S0869864323050013
A. I. Maksimov, I. N. Kavun
{"title":"Formation of a separation vortex in the vicinity of a dihedral corner configuration at M∞ = 2.27 and α ≤ 6°","authors":"A. I. Maksimov,&nbsp;I. N. Kavun","doi":"10.1134/S0869864323050013","DOIUrl":null,"url":null,"abstract":"<div><p>The article considers the development of a near-wall separation vortex arising at a supersonic flow around the external dihedral corner due to the pressure drop between its faces, in the range of angles of attack <i>α</i> = 0.5°–6°. The processes of the origin and development of separation and secondary vortices at the angle increase are investigated in detail. Particular attention is paid to the flow structure change in the vortex location zone. A clear violation of the flow self-similarity in the front part of the model in the zone of vortex system formation is shown.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermophysics and Aeromechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0869864323050013","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

The article considers the development of a near-wall separation vortex arising at a supersonic flow around the external dihedral corner due to the pressure drop between its faces, in the range of angles of attack α = 0.5°–6°. The processes of the origin and development of separation and secondary vortices at the angle increase are investigated in detail. Particular attention is paid to the flow structure change in the vortex location zone. A clear violation of the flow self-similarity in the front part of the model in the zone of vortex system formation is shown.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在 M∞ = 2.27 和 α ≤ 6° 的二面角构型附近形成分离漩涡
文章研究了在攻角 α = 0.5°-6° 的范围内,外斜角周围的超音速气流由于其表面之间的压力降而产生的近壁分离涡的发展过程。详细研究了角度增大时分离涡和次级涡的起源和发展过程。特别关注了涡旋定位区的流动结构变化。结果表明,在涡旋系统形成区,模型前部的流动自相似性明显受到破坏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Thermophysics and Aeromechanics
Thermophysics and Aeromechanics THERMODYNAMICS-MECHANICS
CiteScore
0.90
自引率
40.00%
发文量
29
审稿时长
>12 weeks
期刊介绍: The journal Thermophysics and Aeromechanics publishes original reports, reviews, and discussions on the following topics: hydrogasdynamics, heat and mass transfer, turbulence, means and methods of aero- and thermophysical experiment, physics of low-temperature plasma, and physical and technical problems of energetics. These topics are the prior fields of investigation at the Institute of Thermophysics and the Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences (SB RAS), which are the founders of the journal along with SB RAS. This publication promotes an exchange of information between the researchers of Russia and the international scientific community.
期刊最新文献
Experimental study of the influence of bubble interaction on their characteristics during transient boiling in a flow of subcooled liquid Modification of the DSMC method for a macroscopic chemical reaction On the influence of multi-walled carbon nanotube additives on the rheology of hydrocarbon-based drilling fluids Asymptotic decay of a far momentumless turbulent wake behind a sphere in an isotropic turbulent flow Modeling shock-wave cells at the initial region of the underexpanded supersonic jet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1