Mathematical modeling of self-excited oscillations over the pitch of a conical-spherical body at Mach number M = 1.75 using the forced-oscillation hypothesis
{"title":"Mathematical modeling of self-excited oscillations over the pitch of a conical-spherical body at Mach number M = 1.75 using the forced-oscillation hypothesis","authors":"E. A. Chasovnikov","doi":"10.1134/S0869864323050086","DOIUrl":null,"url":null,"abstract":"<div><p>With the aim to model the self-excited oscillations of a body, a hypothesis is proposed for the formation of periodic bottom-wake vortex structures whose frequency coincides with the natural frequency of oscillations of the body, and the force effect of the oscillations on the body is mathematically described with a harmonic function of time. Analytical formulas for aerodynamic derivatives and equivalent aerodynamic derivatives are obtained. It is shown that the mathematical model satisfactorily describes the dependence of the pitch angle on time and the dependence of the equivalent aerodynamic derivatives on the amplitude of oscillations for two moments of inertia of the body. The mathematical model predicts a hyperbolic law for the dependence of the amplitude of self-excited oscillations on the reduced frequency.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermophysics and Aeromechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0869864323050086","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
With the aim to model the self-excited oscillations of a body, a hypothesis is proposed for the formation of periodic bottom-wake vortex structures whose frequency coincides with the natural frequency of oscillations of the body, and the force effect of the oscillations on the body is mathematically described with a harmonic function of time. Analytical formulas for aerodynamic derivatives and equivalent aerodynamic derivatives are obtained. It is shown that the mathematical model satisfactorily describes the dependence of the pitch angle on time and the dependence of the equivalent aerodynamic derivatives on the amplitude of oscillations for two moments of inertia of the body. The mathematical model predicts a hyperbolic law for the dependence of the amplitude of self-excited oscillations on the reduced frequency.
期刊介绍:
The journal Thermophysics and Aeromechanics publishes original reports, reviews, and discussions on the following topics: hydrogasdynamics, heat and mass transfer, turbulence, means and methods of aero- and thermophysical experiment, physics of low-temperature plasma, and physical and technical problems of energetics. These topics are the prior fields of investigation at the Institute of Thermophysics and the Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences (SB RAS), which are the founders of the journal along with SB RAS. This publication promotes an exchange of information between the researchers of Russia and the international scientific community.