{"title":"Peridynamic model for chloride diffusion–reaction in concrete reflecting mesostructure characteristic","authors":"Xuandong Chen, Xin Gu, Panyong Liu, Jiamin Zhang, Xiaozhou Xia, Qing Zhang","doi":"10.1007/s10704-023-00760-5","DOIUrl":null,"url":null,"abstract":"<div><p>Efficient and accurate prediction of chloride concentration distribution in concrete is extremely important for evaluating the durability of reinforced concrete (RC) structures in the coastal region. A peridynamic (PD) framework for chloride diffusion–reaction is proposed to explore the mechanisms of the long-term chloride ingress in concrete. Specifically, the improved intermediately homogenized peridynamic (IH-PD) method is substituted for the solid modeling method of the interface transition zone (ITZ), with the consideration of the mesoscopic characteristics of concrete and great computational efficiency. In addition, considering the effect of concrete mesostructure, an effective chloride diffusion coefficient is constructed based on the Mori–Tanaka method, in which the proportion of various bonds is determined by the statistics. To verify the reliability of the proposed model, the numerical results are compared with the third-party experiments data. From the results, the randomness of concrete mesostructure leads to the randomness of chloride concentration at the same ingress depth, following the normal distribution. Moreover, the chloride diffusion performance which reflects the speed of chloride diffusion is significantly improved with the increase in the water-cement ratio. Noteworthily, the ITZ thickness can be appropriately increased without affecting the reliability of the results.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"245 3","pages":"121 - 135"},"PeriodicalIF":2.2000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-023-00760-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient and accurate prediction of chloride concentration distribution in concrete is extremely important for evaluating the durability of reinforced concrete (RC) structures in the coastal region. A peridynamic (PD) framework for chloride diffusion–reaction is proposed to explore the mechanisms of the long-term chloride ingress in concrete. Specifically, the improved intermediately homogenized peridynamic (IH-PD) method is substituted for the solid modeling method of the interface transition zone (ITZ), with the consideration of the mesoscopic characteristics of concrete and great computational efficiency. In addition, considering the effect of concrete mesostructure, an effective chloride diffusion coefficient is constructed based on the Mori–Tanaka method, in which the proportion of various bonds is determined by the statistics. To verify the reliability of the proposed model, the numerical results are compared with the third-party experiments data. From the results, the randomness of concrete mesostructure leads to the randomness of chloride concentration at the same ingress depth, following the normal distribution. Moreover, the chloride diffusion performance which reflects the speed of chloride diffusion is significantly improved with the increase in the water-cement ratio. Noteworthily, the ITZ thickness can be appropriately increased without affecting the reliability of the results.
期刊介绍:
The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications.
The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged.
In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.