{"title":"Monitoring groundwater quality using principal component analysis","authors":"Manaswinee Patnaik, Chhabirani Tudu, Dilip Kumar Bagal","doi":"10.1007/s12518-024-00552-z","DOIUrl":null,"url":null,"abstract":"<div><p>For areas without perennial surface water sources, groundwater might be considered the second-largest source of drinking water after surface water. However, groundwater is highly prone to contamination as the groundwater reservoir is formed by the movement of surface water into the subsoil; in its due course of motion, it may dissolve any probable contaminants such as agrochemicals, landfill leachates, the oil spill from underground pipelines, and sewer waste and further convey the contaminated water to join some groundwater aquifers from where the water is again pumped out for human consumption. Therefore, prior to its potable applicability, the quality of groundwater should be evaluated for the presence of alkalinity, hardness, and undesirable and heavy minerals. The Central Ground Water Board (CGWB), Bhubaneswar, collects data on 61 stations in the Kalahandi District for 15 physiochemical parameters, including pH, bicarbonate, hardness, sulphate, Cl<sup>−</sup>, total dissolved solids, Mg<sup>++</sup>, K<sup>+</sup>, Na<sup>+</sup>, total alkalinity, nitrate, fluoride, carbonate, electrical conductivity, and calcium, to assess the quality of the groundwater. The goals were to pinpoint the major elements influencing water quality and comprehend the groundwater quality measures’ regional distribution. Data from the Central Groundwater Board (CGWB) were collected as part of our research, and PCA was used to identify the major impacting elements. To further minimize the dataset’s multidimensionality, a principal component analysis is used. Together, the first three major components explain 76.64% of the overall variability. The first two principal factors themselves explain about 56.9% of the total variance. The three principal factors indicate salinity, hardness, and relative alkalinity and acidity, respectively, in the groundwater.</p></div>","PeriodicalId":46286,"journal":{"name":"Applied Geomatics","volume":"16 1","pages":"281 - 291"},"PeriodicalIF":2.3000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geomatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s12518-024-00552-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0
Abstract
For areas without perennial surface water sources, groundwater might be considered the second-largest source of drinking water after surface water. However, groundwater is highly prone to contamination as the groundwater reservoir is formed by the movement of surface water into the subsoil; in its due course of motion, it may dissolve any probable contaminants such as agrochemicals, landfill leachates, the oil spill from underground pipelines, and sewer waste and further convey the contaminated water to join some groundwater aquifers from where the water is again pumped out for human consumption. Therefore, prior to its potable applicability, the quality of groundwater should be evaluated for the presence of alkalinity, hardness, and undesirable and heavy minerals. The Central Ground Water Board (CGWB), Bhubaneswar, collects data on 61 stations in the Kalahandi District for 15 physiochemical parameters, including pH, bicarbonate, hardness, sulphate, Cl−, total dissolved solids, Mg++, K+, Na+, total alkalinity, nitrate, fluoride, carbonate, electrical conductivity, and calcium, to assess the quality of the groundwater. The goals were to pinpoint the major elements influencing water quality and comprehend the groundwater quality measures’ regional distribution. Data from the Central Groundwater Board (CGWB) were collected as part of our research, and PCA was used to identify the major impacting elements. To further minimize the dataset’s multidimensionality, a principal component analysis is used. Together, the first three major components explain 76.64% of the overall variability. The first two principal factors themselves explain about 56.9% of the total variance. The three principal factors indicate salinity, hardness, and relative alkalinity and acidity, respectively, in the groundwater.
期刊介绍:
Applied Geomatics (AGMJ) is the official journal of SIFET the Italian Society of Photogrammetry and Topography and covers all aspects and information on scientific and technical advances in the geomatics sciences. The Journal publishes innovative contributions in geomatics applications ranging from the integration of instruments, methodologies and technologies and their use in the environmental sciences, engineering and other natural sciences.
The areas of interest include many research fields such as: remote sensing, close range and videometric photogrammetry, image analysis, digital mapping, land and geographic information systems, geographic information science, integrated geodesy, spatial data analysis, heritage recording; network adjustment and numerical processes. Furthermore, Applied Geomatics is open to articles from all areas of deformation measurements and analysis, structural engineering, mechanical engineering and all trends in earth and planetary survey science and space technology. The Journal also contains notices of conferences and international workshops, industry news, and information on new products. It provides a useful forum for professional and academic scientists involved in geomatics science and technology.
Information on Open Research Funding and Support may be found here: https://www.springernature.com/gp/open-research/institutional-agreements