Transient striations in an inductively coupled plasma during E-to-H transitions

Meng-Zhi Gu, Zhi-Cheng Lei, Xuan Zhang, Yi-kang Pu
{"title":"Transient striations in an inductively coupled plasma during E-to-H transitions","authors":"Meng-Zhi Gu, Zhi-Cheng Lei, Xuan Zhang, Yi-kang Pu","doi":"10.1088/1361-6595/ad2951","DOIUrl":null,"url":null,"abstract":"\n Azimuthal transient striations are reported for inductively coupled Ar plasma during E-to-H transition at 200 mTorr. In this transient process, the number of striations increases with time, and striations ultimately disappear when the H mode is reached. An integrated model is developed to investigate the mechanism of this phenomenon. This integrated model incorporates a one-dimensional time-dependent fluid model with a perturbation analysis, as well as a circuit model for power coupling with the external radio-frequency driving source. Based on this integrated model, the development of striations is proposed to be a consequence of ionization instability due to the variation in the electron energy distribution function. The model results for the temporal evolution of the number of striations are in good agreement with the observed data.","PeriodicalId":508056,"journal":{"name":"Plasma Sources Science and Technology","volume":"34 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Sources Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6595/ad2951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Azimuthal transient striations are reported for inductively coupled Ar plasma during E-to-H transition at 200 mTorr. In this transient process, the number of striations increases with time, and striations ultimately disappear when the H mode is reached. An integrated model is developed to investigate the mechanism of this phenomenon. This integrated model incorporates a one-dimensional time-dependent fluid model with a perturbation analysis, as well as a circuit model for power coupling with the external radio-frequency driving source. Based on this integrated model, the development of striations is proposed to be a consequence of ionization instability due to the variation in the electron energy distribution function. The model results for the temporal evolution of the number of striations are in good agreement with the observed data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电感耦合等离子体中从 E 到 H 转变过程中的瞬态条纹
报告了电感耦合氩等离子体在 200 mTorr 的 E 到 H 转变过程中的方位瞬态条纹。在这一瞬态过程中,条纹数量随时间增加,当达到 H 模式时,条纹最终消失。为了研究这一现象的机理,我们建立了一个综合模型。该综合模型包含一个带有扰动分析的一维时变流体模型,以及一个与外部射频驱动源进行功率耦合的电路模型。根据这一综合模型,提出了条纹的形成是电子能量分布函数变化导致的电离不稳定性的结果。关于条纹数量时间演变的模型结果与观测数据十分吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generation of high-density plasma via transparent electrode in capacitively coupled plasma Variations of plasma potential in RF discharges with DC-grounded electrode In situ measurement of electron emission yield at Si and SiO2 surfaces exposed to Ar/CF4 plasmas Study of atoms and multiply charged ions features in the nanosecond laser produced Mo plasma in vacuum using optical emission spectroscopy and time-of-flight electrostatic energy analyzer Ozone production by an He+O2 radio-frequency atmospheric pressure plasma jet driven by tailored voltage waveforms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1