{"title":"Enhancement of Therapeutic Potential of Oncolytic Virus with Homologous Tumor Cell Membranes for Pancreatic Cancer","authors":"Wei Chen, Hui Liu, Yue Chen, Meng Gao","doi":"10.1049/2024/9970665","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Pancreatic cancer is a leading cause of cancer-related deaths worldwide. Conventional therapies often provide limited success, necessitating the need for novel therapeutic strategies. Oncolytic viruses (OVs) are a class of viruses that specifically target and kill cancer cells while leaving normal cells unharmed. These viruses have shown promise in the treatment of various cancers, including pancreatic cancer. However, their use in clinical settings has been limited by several factors. Their inability to efficiently infect and kill tumor cells. To overcome this limitation, a cell membrane-coated oncolytic virus was developed. However, the necessity of homologous and nonhomologous tumor cell membranes for their function has not yet been proven. This novel virus displayed increased infectivity and killing activity against tumor cells compared to nonhomologous tumor cell membranes and noncoated viruses. We believe that the homologous tumor cell membranes-coated OVs can enhance the therapeutic potential for pancreatic cancer therapy.</p>\n </div>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/9970665","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/9970665","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Pancreatic cancer is a leading cause of cancer-related deaths worldwide. Conventional therapies often provide limited success, necessitating the need for novel therapeutic strategies. Oncolytic viruses (OVs) are a class of viruses that specifically target and kill cancer cells while leaving normal cells unharmed. These viruses have shown promise in the treatment of various cancers, including pancreatic cancer. However, their use in clinical settings has been limited by several factors. Their inability to efficiently infect and kill tumor cells. To overcome this limitation, a cell membrane-coated oncolytic virus was developed. However, the necessity of homologous and nonhomologous tumor cell membranes for their function has not yet been proven. This novel virus displayed increased infectivity and killing activity against tumor cells compared to nonhomologous tumor cell membranes and noncoated viruses. We believe that the homologous tumor cell membranes-coated OVs can enhance the therapeutic potential for pancreatic cancer therapy.
胰腺癌是全球癌症相关死亡的主要原因。传统疗法往往收效甚微,因此需要新的治疗策略。肿瘤溶解病毒(OV)是一类专门针对并杀死癌细胞,而不伤害正常细胞的病毒。这些病毒在治疗包括胰腺癌在内的各种癌症方面已显示出前景。然而,它们在临床上的应用受到了一些因素的限制。它们无法有效地感染和杀死肿瘤细胞。为了克服这一限制,人们开发了一种细胞膜包被的溶瘤病毒。然而,同源和非同源肿瘤细胞膜对其功能的必要性尚未得到证实。与非同源肿瘤细胞膜和无包膜病毒相比,这种新型病毒对肿瘤细胞的感染力和杀伤活性都有所提高。我们相信,同源肿瘤细胞膜包被的 OV 可提高胰腺癌治疗的潜力。
期刊介绍:
Electrical and electronic engineers have a long and illustrious history of contributing new theories and technologies to the biomedical sciences. This includes the cable theory for understanding the transmission of electrical signals in nerve axons and muscle fibres; dielectric techniques that advanced the understanding of cell membrane structures and membrane ion channels; electron and atomic force microscopy for investigating cells at the molecular level.
Other engineering disciplines, along with contributions from the biological, chemical, materials and physical sciences, continue to provide groundbreaking contributions to this subject at the molecular and submolecular level. Our subject now extends from single molecule measurements using scanning probe techniques, through to interactions between cells and microstructures, micro- and nano-fluidics, and aspects of lab-on-chip technologies. The primary aim of IET Nanobiotechnology is to provide a vital resource for academic and industrial researchers operating in this exciting cross-disciplinary activity. We can only achieve this by publishing cutting edge research papers and expert review articles from the international engineering and scientific community. To attract such contributions we will exercise a commitment to our authors by ensuring that their manuscripts receive rapid constructive peer opinions and feedback across interdisciplinary boundaries.
IET Nanobiotechnology covers all aspects of research and emerging technologies including, but not limited to:
Fundamental theories and concepts applied to biomedical-related devices and methods at the micro- and nano-scale (including methods that employ electrokinetic, electrohydrodynamic, and optical trapping techniques)
Micromachining and microfabrication tools and techniques applied to the top-down approach to nanobiotechnology
Nanomachining and nanofabrication tools and techniques directed towards biomedical and biotechnological applications (e.g. applications of atomic force microscopy, scanning probe microscopy and related tools)
Colloid chemistry applied to nanobiotechnology (e.g. cosmetics, suntan lotions, bio-active nanoparticles)
Biosynthesis (also known as green synthesis) of nanoparticles; to be considered for publication, research papers in this area must be directed principally towards biomedical research and especially if they encompass in vivo models or proofs of concept. We welcome papers that are application-orientated or offer new concepts of substantial biomedical importance
Techniques for probing cell physiology, cell adhesion sites and cell-cell communication
Molecular self-assembly, including concepts of supramolecular chemistry, molecular recognition, and DNA nanotechnology
Societal issues such as health and the environment
Special issues. Call for papers:
Smart Nanobiosensors for Next-generation Biomedical Applications - https://digital-library.theiet.org/files/IET_NBT_CFP_SNNBA.pdf
Selected extended papers from the International conference of the 19th Asian BioCeramic Symposium - https://digital-library.theiet.org/files/IET_NBT_CFP_ABS.pdf