Production of upgraded metallurgical-grade silicon for a low-cost, high-efficiency, and reliable PV technology

José Manuel Míguez Novoa, Volker Hoffmann, E. Forniés, L. Méndez, Marta Tojeiro, Fernando Ruiz, Manuel Funes, Carlos del Cañizo, David Fuertes Marrón, Nerea Dasilva Villanueva, Luis Jaime Caballero, Bülent Arıkan, Raşit Turan, Hasan Hüseyin Canar, Guillermo Sánchez Plaza
{"title":"Production of upgraded metallurgical-grade silicon for a low-cost, high-efficiency, and reliable PV technology","authors":"José Manuel Míguez Novoa, Volker Hoffmann, E. Forniés, L. Méndez, Marta Tojeiro, Fernando Ruiz, Manuel Funes, Carlos del Cañizo, David Fuertes Marrón, Nerea Dasilva Villanueva, Luis Jaime Caballero, Bülent Arıkan, Raşit Turan, Hasan Hüseyin Canar, Guillermo Sánchez Plaza","doi":"10.3389/fphot.2024.1331030","DOIUrl":null,"url":null,"abstract":"Upgraded metallurgical-grade silicon (UMG-Si) has the potential to reduce the cost of photovoltaic (PV) technology and improve its environmental profile. In this contribution, we summarize the extensive work made in the research and development of UMG technology for PV, which has led to the demonstration of UMG-Si as a competitive alternative to polysilicon for the production of high-efficiency multicrystalline solar cells and modules. The tailoring of the processing steps along the complete Ferrosolar’s UMG-Si manufacturing value chain is addressed, commencing with the purification stage that results in a moderately compensated material due to the presence of phosphorous and boron. Gallium is added as a dopant at the crystallization stage to obtain a uniform resistivity profile of ∼1 Ω cm along the ingot height. Defect engineering techniques based on phosphorus diffusion gettering are optimized to improve the bulk electronic quality of UMG-Si wafers. Black silicon texturing, compatible with subsequent gettering and surface passivation, is successfully implemented. Industrial-type aluminum back surface field (Al-BSF) and passivated emitter and rear cell (PERC) solar cells are fabricated, achieving cell efficiencies in the range of those obtained with conventional polysilicon substrates. TOPCon solar cell processing key steps are also tested to further evaluate the potential of the material in advanced device architectures beyond the PERC. Degradation mechanisms related to light exposure and operation temperature are shown to be insignificant in UMG PERC solar cells when a regeneration step is implemented, and PV modules with several years of outdoor operation demonstrated similar performance to reference ones based on poly-Si. Life cycle analysis (LCA) is carried out to evaluate the environmental impact of UMG-based PV technology when compared to poly-Si-based technology, considering different scenarios for both the manufacturing sites and the PV installations.","PeriodicalId":73099,"journal":{"name":"Frontiers in photonics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fphot.2024.1331030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Upgraded metallurgical-grade silicon (UMG-Si) has the potential to reduce the cost of photovoltaic (PV) technology and improve its environmental profile. In this contribution, we summarize the extensive work made in the research and development of UMG technology for PV, which has led to the demonstration of UMG-Si as a competitive alternative to polysilicon for the production of high-efficiency multicrystalline solar cells and modules. The tailoring of the processing steps along the complete Ferrosolar’s UMG-Si manufacturing value chain is addressed, commencing with the purification stage that results in a moderately compensated material due to the presence of phosphorous and boron. Gallium is added as a dopant at the crystallization stage to obtain a uniform resistivity profile of ∼1 Ω cm along the ingot height. Defect engineering techniques based on phosphorus diffusion gettering are optimized to improve the bulk electronic quality of UMG-Si wafers. Black silicon texturing, compatible with subsequent gettering and surface passivation, is successfully implemented. Industrial-type aluminum back surface field (Al-BSF) and passivated emitter and rear cell (PERC) solar cells are fabricated, achieving cell efficiencies in the range of those obtained with conventional polysilicon substrates. TOPCon solar cell processing key steps are also tested to further evaluate the potential of the material in advanced device architectures beyond the PERC. Degradation mechanisms related to light exposure and operation temperature are shown to be insignificant in UMG PERC solar cells when a regeneration step is implemented, and PV modules with several years of outdoor operation demonstrated similar performance to reference ones based on poly-Si. Life cycle analysis (LCA) is carried out to evaluate the environmental impact of UMG-based PV technology when compared to poly-Si-based technology, considering different scenarios for both the manufacturing sites and the PV installations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生产升级冶金级硅,实现低成本、高效率和可靠的光伏技术
升级冶金级硅(UMG-Si)具有降低光伏(PV)技术成本和改善其环境状况的潜力。在本文中,我们总结了在研究和开发光伏用超纯冶金级硅技术方面所做的大量工作,这些工作已证明超纯冶金级硅可替代多晶硅,用于生产高效多晶太阳能电池和组件。从提纯阶段开始,由于磷和硼的存在,会产生一种中等补偿的材料。在结晶阶段添加镓作为掺杂剂,以获得沿铸锭高度 ∼1 Ω cm 的均匀电阻率曲线。优化了基于磷扩散烧结的缺陷工程技术,以提高 UMG-Si 硅片的电子质量。成功实现了与后续烧结和表面钝化兼容的黑硅纹理。制造出了工业型铝背表面场(Al-BSF)和钝化发射极及背电池(PERC)太阳能电池,电池效率达到了传统多晶硅衬底的效率范围。此外,还测试了 TOPCon 太阳能电池加工的关键步骤,以进一步评估该材料在 PERC 以外的先进设备架构中的潜力。结果表明,当采用再生步骤时,UMG PERC 太阳能电池中与光照射和工作温度有关的降解机制并不明显,而且在室外工作数年的光伏模块显示出与基于多晶硅的参考模块相似的性能。进行了生命周期分析(LCA),以评估基于 UMG 的光伏技术与基于多晶硅的技术相比对环境造成的影响,同时考虑到生产基地和光伏装置的不同情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Association of circadian dysregulation with retinal degeneration and Alzheimer’s disease: a special focus on Muller glial cells Days to re-entrainment following the spring and autumn changes in local clock time: beyond simple heuristics High-resolution imaging for in-situ non-destructive testing by quantitative lensless digital holography Broadband directional filter in multilayer liquid crystal polymer films at W-band Dual-modal photoacoustic and ultrasound imaging: from preclinical to clinical applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1