High-resolution imaging for in-situ non-destructive testing by quantitative lensless digital holography

Daniel Ruiz-Cadalso, Cosme Furlong
{"title":"High-resolution imaging for in-situ non-destructive testing by quantitative lensless digital holography","authors":"Daniel Ruiz-Cadalso, Cosme Furlong","doi":"10.3389/fphot.2024.1351744","DOIUrl":null,"url":null,"abstract":"Quantitative imaging technologies for in-situ non-destructive testing (NDT) demand high-resolution, wide-field, and stable metrology capabilities. Moreover, live processing and automation are vital for real-time quality control and inspection. Conventional methods use complex optical setups, resulting in large, immobile systems which can solely operate within controlled environmental conditions due to temporal instabilities, rendering them unsuitable for in-situ measurements of micro-to nano-scale physical phenomena. This article delves into the multiphysics application of lensless digital holography, emphasizing its metrological capacity for various in-situ scenarios, while acknowledging and characterizing the differing constraints imposed by various physical phenomena, both transient and steady-state. The digital reconstruction of holograms is computed in real-time, and numerical focusing capabilities allow for instantaneous retrieval of the optical phase at various working distances without the need of complex optical setups, making lensless digital holography well-suited for in-situ quantitative imaging under various types of environments. Current NDT capabilities are demonstrated, including high-resolution and real-time reconstructions, simultaneous measurements for comparative metrology, and practical applications ranging from vibrations and acoustics to thermo-mechanics. Furthermore, methodologies to enhance overall metrology capabilities are exploited, addressing the study of existing physical phenomena, thereby expanding the applicability of holographic techniques across diverse industrial sectors.","PeriodicalId":73099,"journal":{"name":"Frontiers in photonics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fphot.2024.1351744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantitative imaging technologies for in-situ non-destructive testing (NDT) demand high-resolution, wide-field, and stable metrology capabilities. Moreover, live processing and automation are vital for real-time quality control and inspection. Conventional methods use complex optical setups, resulting in large, immobile systems which can solely operate within controlled environmental conditions due to temporal instabilities, rendering them unsuitable for in-situ measurements of micro-to nano-scale physical phenomena. This article delves into the multiphysics application of lensless digital holography, emphasizing its metrological capacity for various in-situ scenarios, while acknowledging and characterizing the differing constraints imposed by various physical phenomena, both transient and steady-state. The digital reconstruction of holograms is computed in real-time, and numerical focusing capabilities allow for instantaneous retrieval of the optical phase at various working distances without the need of complex optical setups, making lensless digital holography well-suited for in-situ quantitative imaging under various types of environments. Current NDT capabilities are demonstrated, including high-resolution and real-time reconstructions, simultaneous measurements for comparative metrology, and practical applications ranging from vibrations and acoustics to thermo-mechanics. Furthermore, methodologies to enhance overall metrology capabilities are exploited, addressing the study of existing physical phenomena, thereby expanding the applicability of holographic techniques across diverse industrial sectors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用定量无透镜数字全息技术为现场无损检测提供高分辨率成像
用于现场无损检测(NDT)的定量成像技术需要高分辨率、宽视场和稳定的计量能力。此外,实时处理和自动化对于实时质量控制和检测也至关重要。传统方法使用复杂的光学装置,导致系统庞大且无法移动,由于时间不稳定性,系统只能在受控环境条件下运行,因此不适合对微米到纳米尺度的物理现象进行现场测量。本文深入探讨了无透镜数字全息技术在多物理场中的应用,强调了它在各种原位场景中的计量能力,同时承认并描述了各种物理现象(包括瞬态和稳态现象)带来的不同限制。全息图的数字重建是实时计算的,数字聚焦功能允许在各种工作距离上瞬时检索光学相位,而无需复杂的光学设置,这使得无透镜数字全息技术非常适合在各种环境下进行现场定量成像。演示了当前的无损检测能力,包括高分辨率和实时重建、用于比较计量学的同步测量,以及从振动和声学到热力学的实际应用。此外,还探讨了增强整体计量能力的方法,解决了现有物理现象的研究问题,从而扩大了全息技术在不同工业领域的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Association of circadian dysregulation with retinal degeneration and Alzheimer’s disease: a special focus on Muller glial cells Days to re-entrainment following the spring and autumn changes in local clock time: beyond simple heuristics High-resolution imaging for in-situ non-destructive testing by quantitative lensless digital holography Broadband directional filter in multilayer liquid crystal polymer films at W-band Dual-modal photoacoustic and ultrasound imaging: from preclinical to clinical applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1