Evaluation of Extreme Value Predictions for Unsteady Flow Distortion of Aero-Engine Intakes

Matteo Migliorini, P. Zachos, D. MacManus
{"title":"Evaluation of Extreme Value Predictions for Unsteady Flow Distortion of Aero-Engine Intakes","authors":"Matteo Migliorini, P. Zachos, D. MacManus","doi":"10.1115/1.4064728","DOIUrl":null,"url":null,"abstract":"\n Unsteady flow distortion is of interest for the development air-breathing propulsion systems. These stochastic fluctuations can generate incompatibilities between intakes and aero-engines. Observing the extreme flow distortion events during experimental testing is not guaranteed and statistical models such as Extreme Value Theory (EVT) can be used to estimate the occurrence and magnitude of the fluctuations. However, the current industry standard does not provide guidance on how to apply these methods to obtain useful predictions. This work proposes a systematic process to assess the required number of observations for obtaining statistical convergence of the EVT predictions. This is achieved through shuffling of the data samples and relies on the availability of a sufficiently large initial dataset. This can be adopted by gas turbine engineers to evaluate the data recording requirements and to potentially reduce costs associated with experimental programs.","PeriodicalId":508252,"journal":{"name":"Journal of Engineering for Gas Turbines and Power","volume":"25 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering for Gas Turbines and Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Unsteady flow distortion is of interest for the development air-breathing propulsion systems. These stochastic fluctuations can generate incompatibilities between intakes and aero-engines. Observing the extreme flow distortion events during experimental testing is not guaranteed and statistical models such as Extreme Value Theory (EVT) can be used to estimate the occurrence and magnitude of the fluctuations. However, the current industry standard does not provide guidance on how to apply these methods to obtain useful predictions. This work proposes a systematic process to assess the required number of observations for obtaining statistical convergence of the EVT predictions. This is achieved through shuffling of the data samples and relies on the availability of a sufficiently large initial dataset. This can be adopted by gas turbine engineers to evaluate the data recording requirements and to potentially reduce costs associated with experimental programs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
航空发动机进气口非稳态流变形的极值预测评估
非稳定流畸变是开发喷气推进系统的一个重要问题。这些随机波动会造成进气口和航空发动机之间的不兼容。在实验测试过程中无法保证观察到极端流动畸变事件,而统计模型(如极值理论 (EVT))可用于估计波动的发生和幅度。然而,目前的行业标准并未就如何应用这些方法获得有用的预测结果提供指导。这项工作提出了一个系统流程,用于评估获得 EVT 预测统计收敛性所需的观测值数量。这是通过对数据样本进行洗牌来实现的,并依赖于足够大的初始数据集。燃气轮机工程师可以采用这种方法来评估数据记录要求,并有可能降低与实验项目相关的成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Liquid Cooling of Fuel Cell Powered Aircraft: The Effect of Coolants on Thermal Management Development of 1400°C(2552°F) class Ceramic Matrix Composite Turbine Shroud and Demonstration Test with JAXA F7 Aircraft Engine Comparative Analysis of Total Pressure Measurement Techniques in Rotating Detonation Combustors Prediction of Soot in an RQL Burner Using a Semi-Detailed Jeta-1 Chemistry Nox Emissions Assessment of a Multi Jet Burner Operated with Premixed High Hydrogen Natural Gas Blends
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1