Machine Learning Based System Identification with Binary Output Data Using Kernel Methods

Rachid Fateh, Hicham Oualla, Es-said Azougaghe, A. Darif, A. Boumezzough, Said Safi, M. Pouliquen, M. Frikel
{"title":"Machine Learning Based System Identification with Binary Output Data Using Kernel Methods","authors":"Rachid Fateh, Hicham Oualla, Es-said Azougaghe, A. Darif, A. Boumezzough, Said Safi, M. Pouliquen, M. Frikel","doi":"10.26636/jtit.2024.1.1430","DOIUrl":null,"url":null,"abstract":"Within the realm of machine learning, kernel methods stand out as a prominent class of algorithms with widespread applications, including but not limited to classification, regression, and identification tasks. Our paper addresses the challenging problem of identifying the finite impulse response (FIR) of single-input single-output nonlinear systems under the influence of perturbations and binary-valued measurements. To overcome this challenge, we exploit two algorithms that leverage the framework of reproducing kernel Hilbert spaces (RKHS) to accurately identify the impulse response of the Proakis C channel. Additionally, we introduce the application of these kernel methods for estimating binary output data of nonlinear systems. We showcase the effectiveness of kernel adaptive filters in identifying nonlinear systems with binary output measurements, as demonstrated through the experimental results presented in this study.","PeriodicalId":38425,"journal":{"name":"Journal of Telecommunications and Information Technology","volume":"53 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Telecommunications and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26636/jtit.2024.1.1430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Within the realm of machine learning, kernel methods stand out as a prominent class of algorithms with widespread applications, including but not limited to classification, regression, and identification tasks. Our paper addresses the challenging problem of identifying the finite impulse response (FIR) of single-input single-output nonlinear systems under the influence of perturbations and binary-valued measurements. To overcome this challenge, we exploit two algorithms that leverage the framework of reproducing kernel Hilbert spaces (RKHS) to accurately identify the impulse response of the Proakis C channel. Additionally, we introduce the application of these kernel methods for estimating binary output data of nonlinear systems. We showcase the effectiveness of kernel adaptive filters in identifying nonlinear systems with binary output measurements, as demonstrated through the experimental results presented in this study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的系统识别,使用核方法识别二进制输出数据
在机器学习领域,核方法是一类突出的算法,应用广泛,包括但不限于分类、回归和识别任务。我们的论文探讨了在扰动和二值测量影响下识别单输入单输出非线性系统的有限脉冲响应(FIR)这一具有挑战性的问题。为了克服这一挑战,我们利用两种算法,利用重现核希尔伯特空间(RKHS)框架来准确识别 Proakis C 信道的脉冲响应。此外,我们还介绍了这些核方法在估计非线性系统二进制输出数据中的应用。通过本研究中的实验结果,我们展示了核自适应滤波器在识别具有二进制输出测量值的非线性系统中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Telecommunications and Information Technology
Journal of Telecommunications and Information Technology Engineering-Electrical and Electronic Engineering
CiteScore
1.20
自引率
0.00%
发文量
34
期刊最新文献
High-isolation Quad-port MIMO Antenna for 5G Applications A Generalized Learning Approach to Deep Neural Networks Increasing Parallelism in Forward-backward Distributed Algorithm for Finding Strongly Connected Components of Directed Graphs Analyzing Performance of THz Band Graphene-Based MIMO Antenna for 6G Applications Multiprobe Planar Near-field Range Antenna Measurement System with Improved Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1