AriAplBud: An Aerial Multi-Growth Stage Apple Flower Bud Dataset for Agricultural Object Detection Benchmarking

Data Pub Date : 2024-02-11 DOI:10.3390/data9020036
Wenan Yuan
{"title":"AriAplBud: An Aerial Multi-Growth Stage Apple Flower Bud Dataset for Agricultural Object Detection Benchmarking","authors":"Wenan Yuan","doi":"10.3390/data9020036","DOIUrl":null,"url":null,"abstract":"As one of the most important topics in contemporary computer vision research, object detection has received wide attention from the precision agriculture community for diverse applications. While state-of-the-art object detection frameworks are usually evaluated against large-scale public datasets containing mostly non-agricultural objects, a specialized dataset that reflects unique properties of plants would aid researchers in investigating the utility of newly developed object detectors within agricultural contexts. This article presents AriAplBud: a close-up apple flower bud image dataset created using an unmanned aerial vehicle (UAV)-based red–green–blue (RGB) camera. AriAplBud contains 3600 images of apple flower buds at six growth stages, with 110,467 manual bounding box annotations as positive samples and 2520 additional empty orchard images containing no apple flower bud as negative samples. AriAplBud can be directly deployed for developing object detection models that accept Darknet annotation format without additional preprocessing steps, serving as a potential benchmark for future agricultural object detection research. A demonstration of developing YOLOv8-based apple flower bud detectors is also presented in this article.","PeriodicalId":502371,"journal":{"name":"Data","volume":"119 51","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/data9020036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As one of the most important topics in contemporary computer vision research, object detection has received wide attention from the precision agriculture community for diverse applications. While state-of-the-art object detection frameworks are usually evaluated against large-scale public datasets containing mostly non-agricultural objects, a specialized dataset that reflects unique properties of plants would aid researchers in investigating the utility of newly developed object detectors within agricultural contexts. This article presents AriAplBud: a close-up apple flower bud image dataset created using an unmanned aerial vehicle (UAV)-based red–green–blue (RGB) camera. AriAplBud contains 3600 images of apple flower buds at six growth stages, with 110,467 manual bounding box annotations as positive samples and 2520 additional empty orchard images containing no apple flower bud as negative samples. AriAplBud can be directly deployed for developing object detection models that accept Darknet annotation format without additional preprocessing steps, serving as a potential benchmark for future agricultural object detection research. A demonstration of developing YOLOv8-based apple flower bud detectors is also presented in this article.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AriAplBud:用于农业对象检测基准测试的航空多生长阶段苹果花蕾数据集
作为当代计算机视觉研究中最重要的课题之一,物体检测在精准农业领域的各种应用受到了广泛关注。最先进的物体检测框架通常是通过大规模公共数据集进行评估的,这些数据集大多包含非农业物体,而反映植物独特属性的专门数据集将有助于研究人员调查新开发的物体检测器在农业环境中的实用性。本文介绍的 AriAplBud 是一个苹果花蕾特写图像数据集,使用基于无人机(UAV)的红-绿-蓝(RGB)相机创建。AriAplBud 包含 3600 张六个生长阶段的苹果花蕾图像,其中 110,467 张人工边界框注释为阳性样本,另外 2520 张没有苹果花蕾的空果园图像为阴性样本。AriAplBud 可直接用于开发接受暗网注释格式的对象检测模型,无需额外的预处理步骤,是未来农业对象检测研究的潜在基准。本文还演示了如何开发基于 YOLOv8 的苹果花蕾检测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SparrKULee: A Speech-Evoked Auditory Response Repository from KU Leuven, Containing the EEG of 85 Participants Bootstrap Method as a Tool for Analyzing Data with Atypical Distributions Deviating from Parametric Assumptions: Critique and Effectiveness Evaluation SaBi3d—A LiDAR Point Cloud Data Set of Car-to-Bicycle Overtaking Maneuvers Data Descriptor of Snakebites in Brazil from 2007 to 2020 Optimizing Database Performance in Complex Event Processing through Indexing Strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1