Geopolymerization of Recycled Glass Waste: A Sustainable Solution for a Lightweight and Fire-Resistant Material

IF 4.6 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Recycling Pub Date : 2024-02-07 DOI:10.3390/recycling9010016
Marios Valanides, Konstantinos Aivaliotis, K. Oikonomopoulou, Alexandros Fikardos, P. Savva, K. Sakkas, D. Nicolaides
{"title":"Geopolymerization of Recycled Glass Waste: A Sustainable Solution for a Lightweight and Fire-Resistant Material","authors":"Marios Valanides, Konstantinos Aivaliotis, K. Oikonomopoulou, Alexandros Fikardos, P. Savva, K. Sakkas, D. Nicolaides","doi":"10.3390/recycling9010016","DOIUrl":null,"url":null,"abstract":"Glass is considered a sustainable material with achievable recovery rates within the EU. However, there are limited data available for construction glass waste management. Furthermore, glass is a heavy material, and considering the geographical limitations of Cyprus, the transportation trading cost within the EU is extremely high. Therefore, another method for utilizing this by-product should be developed. The aim of this research is to investigate the production of a low-cost, lightweight and fireproof material able to retain its structural integrity, using the geopolymerization method with the incorporation of randomly collected construction glass waste. The glass waste was initially processed in a Los Angeles abrasion machine and then through a Micro-Deval apparatus in order to be converted to a fine powder. Mechanical (compressive and flexural strength), physical (setting time and water absorption) and thermal properties (thermal conductivity) were investigated. The fire-resistant materials presented densities averaging 450 kg/m3 with a range of compressive strengths of 0.5 to 3 MPa. Additionally, a techno-economic analysis was conducted to evaluate the viability of the adopted material. Based on the results, the final geopolymer product has the potential to be utilized as a fire resistance material, preventing yielding or spalling.","PeriodicalId":36729,"journal":{"name":"Recycling","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recycling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/recycling9010016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Glass is considered a sustainable material with achievable recovery rates within the EU. However, there are limited data available for construction glass waste management. Furthermore, glass is a heavy material, and considering the geographical limitations of Cyprus, the transportation trading cost within the EU is extremely high. Therefore, another method for utilizing this by-product should be developed. The aim of this research is to investigate the production of a low-cost, lightweight and fireproof material able to retain its structural integrity, using the geopolymerization method with the incorporation of randomly collected construction glass waste. The glass waste was initially processed in a Los Angeles abrasion machine and then through a Micro-Deval apparatus in order to be converted to a fine powder. Mechanical (compressive and flexural strength), physical (setting time and water absorption) and thermal properties (thermal conductivity) were investigated. The fire-resistant materials presented densities averaging 450 kg/m3 with a range of compressive strengths of 0.5 to 3 MPa. Additionally, a techno-economic analysis was conducted to evaluate the viability of the adopted material. Based on the results, the final geopolymer product has the potential to be utilized as a fire resistance material, preventing yielding or spalling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
回收玻璃废料的土工聚合:轻质防火材料的可持续解决方案
玻璃被认为是一种可持续材料,其回收率在欧盟范围内是可以达到的。然而,有关建筑玻璃废物管理的数据十分有限。此外,玻璃是一种重型材料,考虑到塞浦路斯的地理限制,欧盟内部的运输贸易成本极高。因此,应开发另一种方法来利用这种副产品。本研究的目的是调查如何利用土工聚合法生产一种低成本、轻质、防火且能保持结构完整性的材料,并在其中加入随机收集的建筑玻璃废料。玻璃废料首先在洛杉矶研磨机中进行处理,然后通过 Micro-Deval 设备转化为细粉。对材料的机械性能(抗压和抗折强度)、物理性能(凝固时间和吸水性)和热性能(导热性)进行了研究。耐火材料的密度平均为 450 公斤/立方米,抗压强度范围为 0.5 至 3 兆帕。此外,还进行了技术经济分析,以评估所采用材料的可行性。根据分析结果,最终的土工聚合物产品有可能用作防火材料,防止屈服或剥落。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Recycling
Recycling Environmental Science-Management, Monitoring, Policy and Law
CiteScore
6.80
自引率
7.00%
发文量
84
审稿时长
11 weeks
期刊最新文献
Quality-Driven Allocation Method to Promote the Circular Economy for Plastic Components in the Automotive Industry Silicon Kerf Recovery via Acid Leaching Followed by Melting at Elevated Temperatures An Investigation into Sustainable Solutions: Utilizing Hydrated Lime Derived from Oyster Shells as an Eco-Friendly Alternative for Semiconductor Wastewater Treatment Environmental and Economic Forecast of the Widespread Use of Anaerobic Digestion Techniques Concentration of Silver from Recycling of Fine Powder of Wasted Videogame Printed Circuit Boards through Reverse Froth Flotation and Magnetic Separation Processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1