Kyosuke Takami, B. Flanagan, Yiling Dai, Hiroaki Ogata
{"title":"Evaluating the Effectiveness of Bayesian Knowledge Tracing Model-Based Explainable Recommender","authors":"Kyosuke Takami, B. Flanagan, Yiling Dai, Hiroaki Ogata","doi":"10.4018/ijdet.337600","DOIUrl":null,"url":null,"abstract":"Explainable recommendation, which provides an explanation about why a quiz is recommended, helps to improve transparency, persuasiveness, and trustworthiness. However, little research examined the effectiveness of the explainable recommender, especially on academic performance. To survey its effectiveness, the authors evaluate the math academic performance among middle school students (n=115) by giving pre- and post-test questions based evaluation techniques. During the pre- and post-test periods, students were encouraged to use the Bayesian Knowledge Tracing model based explainable recommendation system. To evaluate how well the students were able to do what they could not do, the authors defined growth rate and found recommended quiz clicked counts had a positive effect on the total number of solved quizzes (R=0.343, P=0.005) and growth rate (R=0.297, P=0.017) despite no correlation between the total number of solved quizzes and growth rate. The results suggest that the use of an explainable recommendation system that learns efficiently will enable students to do what they could not do before.","PeriodicalId":44463,"journal":{"name":"International Journal of Distance Education Technologies","volume":"38 6","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distance Education Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdet.337600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
Explainable recommendation, which provides an explanation about why a quiz is recommended, helps to improve transparency, persuasiveness, and trustworthiness. However, little research examined the effectiveness of the explainable recommender, especially on academic performance. To survey its effectiveness, the authors evaluate the math academic performance among middle school students (n=115) by giving pre- and post-test questions based evaluation techniques. During the pre- and post-test periods, students were encouraged to use the Bayesian Knowledge Tracing model based explainable recommendation system. To evaluate how well the students were able to do what they could not do, the authors defined growth rate and found recommended quiz clicked counts had a positive effect on the total number of solved quizzes (R=0.343, P=0.005) and growth rate (R=0.297, P=0.017) despite no correlation between the total number of solved quizzes and growth rate. The results suggest that the use of an explainable recommendation system that learns efficiently will enable students to do what they could not do before.
期刊介绍:
Discussions of computational methods, algorithms, implemented prototype systems, and applications of open and distance learning are the focuses of this publication. Practical experiences and surveys of using distance learning systems are also welcome. Distance education technologies published in IJDET will be divided into three categories, communication technologies, intelligent technologies.