The role of the coupling matrix elements in time-dependent density functional theory on the simulation of core-level spectra of transition metal complexes

Sarah Pak, Daniel R. Nascimento
{"title":"The role of the coupling matrix elements in time-dependent density functional theory on the simulation of core-level spectra of transition metal complexes","authors":"Sarah Pak, Daniel R. Nascimento","doi":"10.1088/2516-1075/ad2693","DOIUrl":null,"url":null,"abstract":"\n Time-dependent density functional theory (TD-DFT) stands out as an efficient tool for computing core-level spectra in large molecules, particularly transition metal complexes. However, despite their relatively moderate computational demands, TD-DFT methods can still pose challenges for typical computations involving transition metal complexes with over a thousand basis functions. In this study, we investigate the role of the Coulomb, Hartree-Fock exchange, and exchange-correlation kernel contributions to the TD-DFT coupling matrix elements when simulating core-level spectra in transition metal complexes. Our observations reveal that the exchange-correlation kernel contribution, responsible for more than 50% of the computational time in a hybrid TD-DFT calculation, surprisingly has no discernible impact on the qualitative aspects of the calculated spectra. While the Coulomb term plays a crucial role in describing L2,3-edge spectra, its significance becomes negligible when considering K, L 1 , and M 4,5 edges. In contrast, the scaled Hartree-Fock exchange is demonstrated to be the most influential term, underscoring the necessity for hybrid density functional approximations in accurately simulating core-level spectra. These trends hold irrespective of the chosen basis set and exchange-correlation functional, providing valuable insights for the development of approximate methods for incorporating two-electron interactions within the realm of core-level spectroscopies.","PeriodicalId":502740,"journal":{"name":"Electronic Structure","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Structure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1075/ad2693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Time-dependent density functional theory (TD-DFT) stands out as an efficient tool for computing core-level spectra in large molecules, particularly transition metal complexes. However, despite their relatively moderate computational demands, TD-DFT methods can still pose challenges for typical computations involving transition metal complexes with over a thousand basis functions. In this study, we investigate the role of the Coulomb, Hartree-Fock exchange, and exchange-correlation kernel contributions to the TD-DFT coupling matrix elements when simulating core-level spectra in transition metal complexes. Our observations reveal that the exchange-correlation kernel contribution, responsible for more than 50% of the computational time in a hybrid TD-DFT calculation, surprisingly has no discernible impact on the qualitative aspects of the calculated spectra. While the Coulomb term plays a crucial role in describing L2,3-edge spectra, its significance becomes negligible when considering K, L 1 , and M 4,5 edges. In contrast, the scaled Hartree-Fock exchange is demonstrated to be the most influential term, underscoring the necessity for hybrid density functional approximations in accurately simulating core-level spectra. These trends hold irrespective of the chosen basis set and exchange-correlation functional, providing valuable insights for the development of approximate methods for incorporating two-electron interactions within the realm of core-level spectroscopies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时变密度泛函理论中的耦合矩阵元素对过渡金属复合物核心级光谱模拟的作用
时间相关密度泛函理论(TD-DFT)是计算大分子,尤其是过渡金属复合物核心级光谱的有效工具。然而,尽管 TD-DFT 方法对计算的要求相对较低,但对于涉及过渡金属配合物的典型计算(基函数超过一千个)而言,仍然是一个挑战。在本研究中,我们研究了在模拟过渡金属配合物的核级光谱时,库仑、哈特里-福克交换和交换相关核对 TD-DFT 耦合矩阵元素的贡献。我们的观察发现,在混合 TD-DFT 计算中,交换相关核贡献占计算时间的 50%以上,但令人惊讶的是,它对计算光谱的质量方面没有明显影响。虽然库仑项在描述 L2,3 边缘光谱时起着至关重要的作用,但当考虑 K、L 1 和 M 4,5 边缘时,它的重要性就可以忽略不计了。相比之下,按比例哈特里-福克交换被证明是最有影响力的项,这突出了混合密度泛函近似在精确模拟核级光谱方面的必要性。无论选择哪种基集和交换相关函数,这些趋势都是成立的,这为开发近似方法以将双电子相互作用纳入核级光谱领域提供了宝贵的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-space multiple-scattering approach to the van der Waals interaction A numerical Poisson solver with improved radial solutions for a self-consistent locally scaled self-interaction correction method Interlinking electronic band properties in catalysts with electrochemical nitrogen reduction performance: A direct influence The role of the coupling matrix elements in time-dependent density functional theory on the simulation of core-level spectra of transition metal complexes The role of the coupling matrix elements in time-dependent density functional theory on the simulation of core-level spectra of transition metal complexes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1