The role of resonance frequency in slow-paced breathing: Systematic review

Božo Vukojević, Christian Vater, Sylvain Laborde
{"title":"The role of resonance frequency in slow-paced breathing: Systematic review","authors":"Božo Vukojević, Christian Vater, Sylvain Laborde","doi":"10.36950/2024.2ciss080","DOIUrl":null,"url":null,"abstract":"Introduction \nA healthy heart does not beat like a metronome because it shows characteristics of complex non-linear oscillations and mathematical chaos, together with the existence of resonance in the cardiorespiratory system (Shaffer et al., 2014). On one swing, the inhalation causes an increase of the heart rate, while the opposite effect is during exhaling, thus having variability properties in the inter-beat intervals. By utilizing this effect of respiratory sinus arrhythmia, resonance frequency (RF) gives insight into the respiratory rate at which this resonance is amplified in the heart rate, blood pressure, and respiration systems (Shaffer & Meehan, 2020). The aim of this systematic review was to examine the effects of resonance frequency in Slow-Paced Breathing (SPB) studies, as well as the relation between RF and anthropological measures of gender, height, and age. \nMethods \nWe systematically reviewed the literature regarding the role of resonance frequency in the SPB research using the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) evidence-based reporting checklist and a Participants, Index Test, Comparison, Outcomes, and Study Design (PICOS) framework (PROSPERO Registration Number CRD42021253009). We included SPB studies with experimental and quasi-experimental designs, conducted on healthy populations that determined individual RF in the breathing protocols, with no specific criteria on gender, age restrictions, or publication year. Additionally, interventions combining RF SPB with biofeedback monitoring were included. Outcomes of the included studies included any psychological or physiological findings. Altogether, 17 studies (n = 810 participants) were assessed for risk of bias with The Joanna Briggs Institute Critical Appraisal Checklist (Moola et al., 2015). \nResults \nOverall, positive effects on psychological constructs like attention control, executive functioning, sleep quality, psychological relaxation, mindful awareness, self-compassion, vigor, self-efficacy, mood, depression, anxiety, and stress have been reported. Physiologically, RF breathing caused a more coherent heart rhythm pattern with high amplitude oscillation, while lowering systolic pressure, decreasing HF power, HR beats per minute, a-amylase and cortisol stress biomarkers, and increasing the average baroreflex gain, SpO2, and LF power. The scarcity of reported data and analysis concerning the effects of anthropological data do not give a strong claim to the existence of height, gender, and age influences, but there is a notion that height and RF are negatively correlated, while men have lower RF than women. \nDiscussion/Conclusion \nWe conclude the overall beneficial effects of RF breathing on psychological and physiological systems. Namely, improved attention control, executive functioning, sleep quality with fewer disturbances, and psychological relaxation, increased mindful awareness, self-compassion, vigor, and self-efficacy; less worrying and a decrease in total mood disturbance, depression, anxiety, and stress were observed. On a physiological level, RF breathing caused a lowering of systolic pressure, a decrease of HF power, HR beats per minute, a-amylase, and cortisol stress biomarkers, while increasing the average baroreflex gain, SpO2, and LF power through a more coherent heart rhythm pattern with high amplitude oscillation. In regard to the anthropological measures, scarcely reported data suggests the RF is related to the blood volume and the perfusion of the arterial tree, hence men are supposedly having a lower resonance frequency than women, and RF being negatively correlated with height. While these findings are in overall support for RF breathing, they are not ubiquitous, and thus warrants more experimental evidence to test the aforementioned effects. Besides limitations on technical levels and methodological inconsistencies among reviewed studies (e.g., differences in RF determination protocols, operationalization variables and inhale/exhale ratio), one of the major obstacles in the review process was the insufficient gathering and reporting data on some important RF aspects (i.e. no report on detected RF distribution among participants and their anthropological data, control of transient characteristics and lifestyle choices that influence HRV). Finally, future studies should empirically replicate reviewed studies and test the RF biofeedback model in a laboratory and natural setting. \nReferences \nShaffer, F., McCraty, R., & Zerr, C. L. (2014). A healthy heart is not a metronome: An integrative review of the heart’s anatomy and heart rate variability. Frontiers in Psychology, 5, Article 1040. https://doi.org/10.3389/fpsyg.2014.01040 \nShaffer, F., & Meehan, Z. M. (2020). A practical guide to resonance frequency assessment for heart rate variability niofeedback. Frontiers in Neuroscience, 14, Article 570400. https://doi.org/10.3389/fnins.2020.570400 \nMoola, S., Munn, Z., Sears, K., Sfetcu, R., Currie, M., Lisy, K., Tufanaru, C., Qureshi, R., Mattis, P., & Mu, P. (2015). Conducting systematic reviews of association (etiology): The Joanna Briggs Institute’s approach. International Journal of Evidence-Based Healthcare, 13(3), 163–169. https://doi.org/10.1097/XEB.0000000000000064","PeriodicalId":415194,"journal":{"name":"Current Issues in Sport Science (CISS)","volume":"82 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Issues in Sport Science (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36950/2024.2ciss080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction A healthy heart does not beat like a metronome because it shows characteristics of complex non-linear oscillations and mathematical chaos, together with the existence of resonance in the cardiorespiratory system (Shaffer et al., 2014). On one swing, the inhalation causes an increase of the heart rate, while the opposite effect is during exhaling, thus having variability properties in the inter-beat intervals. By utilizing this effect of respiratory sinus arrhythmia, resonance frequency (RF) gives insight into the respiratory rate at which this resonance is amplified in the heart rate, blood pressure, and respiration systems (Shaffer & Meehan, 2020). The aim of this systematic review was to examine the effects of resonance frequency in Slow-Paced Breathing (SPB) studies, as well as the relation between RF and anthropological measures of gender, height, and age. Methods We systematically reviewed the literature regarding the role of resonance frequency in the SPB research using the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) evidence-based reporting checklist and a Participants, Index Test, Comparison, Outcomes, and Study Design (PICOS) framework (PROSPERO Registration Number CRD42021253009). We included SPB studies with experimental and quasi-experimental designs, conducted on healthy populations that determined individual RF in the breathing protocols, with no specific criteria on gender, age restrictions, or publication year. Additionally, interventions combining RF SPB with biofeedback monitoring were included. Outcomes of the included studies included any psychological or physiological findings. Altogether, 17 studies (n = 810 participants) were assessed for risk of bias with The Joanna Briggs Institute Critical Appraisal Checklist (Moola et al., 2015). Results Overall, positive effects on psychological constructs like attention control, executive functioning, sleep quality, psychological relaxation, mindful awareness, self-compassion, vigor, self-efficacy, mood, depression, anxiety, and stress have been reported. Physiologically, RF breathing caused a more coherent heart rhythm pattern with high amplitude oscillation, while lowering systolic pressure, decreasing HF power, HR beats per minute, a-amylase and cortisol stress biomarkers, and increasing the average baroreflex gain, SpO2, and LF power. The scarcity of reported data and analysis concerning the effects of anthropological data do not give a strong claim to the existence of height, gender, and age influences, but there is a notion that height and RF are negatively correlated, while men have lower RF than women. Discussion/Conclusion We conclude the overall beneficial effects of RF breathing on psychological and physiological systems. Namely, improved attention control, executive functioning, sleep quality with fewer disturbances, and psychological relaxation, increased mindful awareness, self-compassion, vigor, and self-efficacy; less worrying and a decrease in total mood disturbance, depression, anxiety, and stress were observed. On a physiological level, RF breathing caused a lowering of systolic pressure, a decrease of HF power, HR beats per minute, a-amylase, and cortisol stress biomarkers, while increasing the average baroreflex gain, SpO2, and LF power through a more coherent heart rhythm pattern with high amplitude oscillation. In regard to the anthropological measures, scarcely reported data suggests the RF is related to the blood volume and the perfusion of the arterial tree, hence men are supposedly having a lower resonance frequency than women, and RF being negatively correlated with height. While these findings are in overall support for RF breathing, they are not ubiquitous, and thus warrants more experimental evidence to test the aforementioned effects. Besides limitations on technical levels and methodological inconsistencies among reviewed studies (e.g., differences in RF determination protocols, operationalization variables and inhale/exhale ratio), one of the major obstacles in the review process was the insufficient gathering and reporting data on some important RF aspects (i.e. no report on detected RF distribution among participants and their anthropological data, control of transient characteristics and lifestyle choices that influence HRV). Finally, future studies should empirically replicate reviewed studies and test the RF biofeedback model in a laboratory and natural setting. References Shaffer, F., McCraty, R., & Zerr, C. L. (2014). A healthy heart is not a metronome: An integrative review of the heart’s anatomy and heart rate variability. Frontiers in Psychology, 5, Article 1040. https://doi.org/10.3389/fpsyg.2014.01040 Shaffer, F., & Meehan, Z. M. (2020). A practical guide to resonance frequency assessment for heart rate variability niofeedback. Frontiers in Neuroscience, 14, Article 570400. https://doi.org/10.3389/fnins.2020.570400 Moola, S., Munn, Z., Sears, K., Sfetcu, R., Currie, M., Lisy, K., Tufanaru, C., Qureshi, R., Mattis, P., & Mu, P. (2015). Conducting systematic reviews of association (etiology): The Joanna Briggs Institute’s approach. International Journal of Evidence-Based Healthcare, 13(3), 163–169. https://doi.org/10.1097/XEB.0000000000000064
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
共振频率在慢节奏呼吸中的作用:系统综述
, Sfetcu, R., Currie, M., Lisy, K., Tufanaru, C., Qureshi, R., Mattis, P., & Mu, P. (2015)。开展关联(病因学)系统综述:乔安娜-布里格斯研究所的方法。国际循证医疗保健杂志》,13(3),163-169。https://doi.org/10.1097/XEB.0000000000000064。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
From supercrip to techno supercrip Associations between daily movement behaviors, sleep, and affect in older adults: An ecological momentary assessment study Position statement regarding the current standing of exercise therapy in Austria (Positionspapier zur Situation der Trainingstherapie in Österreich) The Perceived Instrumental Effects of Maltreatment in Sport (PIEMS) scale: Translation, (cross-)validation, and short-form development of the German version Who’s better? Adaptive comparative judgment of dance performances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1