Iron fertilization–induced deoxygenation of eastern equatorial Pacific Ocean intermediate waters during the Paleocene–Eocene thermal maximum

Geology Pub Date : 2024-02-05 DOI:10.1130/g51770.1
Xiaodong Jiang, Xiangyu Zhao, Xiaoming Sun, Andrew P. Roberts, A. Sluijs, Yu‐Min Chou, Weiqi Yao, Jieqi Xing, Weijie Zhang, Qingsong Liu
{"title":"Iron fertilization–induced deoxygenation of eastern equatorial Pacific Ocean intermediate waters during the Paleocene–Eocene thermal maximum","authors":"Xiaodong Jiang, Xiangyu Zhao, Xiaoming Sun, Andrew P. Roberts, A. Sluijs, Yu‐Min Chou, Weiqi Yao, Jieqi Xing, Weijie Zhang, Qingsong Liu","doi":"10.1130/g51770.1","DOIUrl":null,"url":null,"abstract":"The Paleocene–Eocene thermal maximum (PETM), a transient period of global warming, is considered to be an important analog for future greenhouse conditions. It was accompanied by a significant carbon cycle perturbation. Although ocean deoxygenation across the PETM is reported widely, its mechanism in the open ocean remains uncertain. Here, we present magnetic and geochemical analyses of sediments from the eastern equatorial Pacific Ocean. We found that iron fertilization during the PETM by eolian dust and volcanic eruptions fueled eastern equatorial Pacific Ocean productivity. This process led to increased organic matter degradation and oxygen consumption in intermediate waters, leading to deoxygenation. Our findings suggest that iron fertilization could be an important driver of open-ocean oxygen loss, as a side effect of global warming.","PeriodicalId":503125,"journal":{"name":"Geology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1130/g51770.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Paleocene–Eocene thermal maximum (PETM), a transient period of global warming, is considered to be an important analog for future greenhouse conditions. It was accompanied by a significant carbon cycle perturbation. Although ocean deoxygenation across the PETM is reported widely, its mechanism in the open ocean remains uncertain. Here, we present magnetic and geochemical analyses of sediments from the eastern equatorial Pacific Ocean. We found that iron fertilization during the PETM by eolian dust and volcanic eruptions fueled eastern equatorial Pacific Ocean productivity. This process led to increased organic matter degradation and oxygen consumption in intermediate waters, leading to deoxygenation. Our findings suggest that iron fertilization could be an important driver of open-ocean oxygen loss, as a side effect of global warming.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
古新世-始新世热量最大期铁肥化诱发的东赤道太平洋中间水域脱氧现象
古新世-始新世热量最高峰(PETM)是全球变暖的一个短暂时期,被认为是未来温室条件的一个重要类比。伴随着这一时期的是碳循环的严重扰动。尽管整个 PETM 期间的海洋脱氧现象被广泛报道,但其在开阔洋中的机理仍不确定。在此,我们对赤道太平洋东部的沉积物进行了磁性和地球化学分析。我们发现,在 PETM 期间,由原生尘埃和火山爆发造成的铁肥化促进了东赤道太平洋的生产力。这一过程导致中间水域的有机物降解和耗氧量增加,从而导致脱氧。我们的研究结果表明,作为全球变暖的副作用,铁肥化可能是公海氧气流失的一个重要驱动因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Globally significant mass of terrestrial organic carbon efficiently transported by canyon-flushing turbidity currents Generation of Archean TTGs via sluggish subduction Early Mississippian global δ13C excursion is not a diagenetic artifact Fingerprinting enhanced floodplain reworking during the Paleocene−Eocene Thermal Maximum in the Southern Pyrenees (Spain): Implications for channel dynamics and carbon burial Late Oligocene−Miocene evolution of deep-water circulation in the abyssal South China Sea: Insights from Nd isotopes of fossil fish teeth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1