Li Dian, Duan Wenjing, Liu Qun’en, Wu Weixun, Zhan Xiaodeng, Sun Lianping, Zhang Yingxin, Cheng Shihua
{"title":"Gapless Genome Assembly of ZH8015 and Preliminary Multi-Omics Analysis to Investigate ZH8015’s Responses Against Brown Planthopper Infestation","authors":"Li Dian, Duan Wenjing, Liu Qun’en, Wu Weixun, Zhan Xiaodeng, Sun Lianping, Zhang Yingxin, Cheng Shihua","doi":"10.1016/j.rsci.2024.02.001","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate genomic information is essential for advancing genetic breeding research in specific rice varieties. This study presented a gapless genome assembly of the <em>indica</em> rice cultivar Zhonghui 8015 (ZH8015) using PacBio HiFi, Hi-C, and ONT (Oxford Nanopore Technologies) ultra-long sequencing technologies, annotating 43 037 gene structures. Subsequently, utilizing this genome along with transcriptomic and metabolomic techniques, we explored ZH8015’s response to brown planthopper (BPH) infestation. Continuous transcriptomic sampling indicated significant changes in gene expression levels around 48 h after BPH feeding. Enrichment analysis revealed particularly significant alterations in genes related to reactive oxygen species scavenging and cell wall formation. Metabolomic results demonstrated marked increases in levels of several monosaccharides, which are components of the cell wall and dramatic changes in flavonoid contents. Omics association analysis identified differentially expressed genes associated with key metabolites, shedding light on ZH8015’s response to BPH infestation. In summary, this study constructed a reliable genome sequence resource for ZH8015, and the preliminary multi-omics results will guide future insect-resistant breeding research.</p></div>","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":"31 3","pages":"Pages 317-327"},"PeriodicalIF":5.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1672630824000106/pdfft?md5=a6009b1eec0c2f12254e719da2208f27&pid=1-s2.0-S1672630824000106-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rice Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1672630824000106","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate genomic information is essential for advancing genetic breeding research in specific rice varieties. This study presented a gapless genome assembly of the indica rice cultivar Zhonghui 8015 (ZH8015) using PacBio HiFi, Hi-C, and ONT (Oxford Nanopore Technologies) ultra-long sequencing technologies, annotating 43 037 gene structures. Subsequently, utilizing this genome along with transcriptomic and metabolomic techniques, we explored ZH8015’s response to brown planthopper (BPH) infestation. Continuous transcriptomic sampling indicated significant changes in gene expression levels around 48 h after BPH feeding. Enrichment analysis revealed particularly significant alterations in genes related to reactive oxygen species scavenging and cell wall formation. Metabolomic results demonstrated marked increases in levels of several monosaccharides, which are components of the cell wall and dramatic changes in flavonoid contents. Omics association analysis identified differentially expressed genes associated with key metabolites, shedding light on ZH8015’s response to BPH infestation. In summary, this study constructed a reliable genome sequence resource for ZH8015, and the preliminary multi-omics results will guide future insect-resistant breeding research.
Rice ScienceAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
8.90
自引率
6.20%
发文量
55
审稿时长
40 weeks
期刊介绍:
Rice Science is an international research journal sponsored by China National Rice Research Institute. It publishes original research papers, review articles, as well as short communications on all aspects of rice sciences in English language. Some of the topics that may be included in each issue are: breeding and genetics, biotechnology, germplasm resources, crop management, pest management, physiology, soil and fertilizer management, ecology, cereal chemistry and post-harvest processing.