Assessing Thermospheric Neutral Density Models Using GEODYN's Precision Orbit Determination

Space Weather Pub Date : 2024-02-01 DOI:10.1029/2023sw003603
Zachary C. Waldron, K. Garcia‐Sage, J. Thayer, E. Sutton, Vishal, Ray, D. Rowlands, F. LeMoine, S. Luthcke, M. Kuznetsova, Rebecca Ringuette, L. Rastaetter, G. Berland
{"title":"Assessing Thermospheric Neutral Density Models Using GEODYN's Precision Orbit Determination","authors":"Zachary C. Waldron, K. Garcia‐Sage, J. Thayer, E. Sutton, Vishal, Ray, D. Rowlands, F. LeMoine, S. Luthcke, M. Kuznetsova, Rebecca Ringuette, L. Rastaetter, G. Berland","doi":"10.1029/2023sw003603","DOIUrl":null,"url":null,"abstract":"This study focuses on utilizing the increasing availability of satellite trajectory data from global navigation satellite system‐enabled low‐Earth orbiting satellites and their precision orbit determination (POD) solutions to expand and refine thermospheric model validation capabilities. The research introduces an updated interface for the GEODYN‐II POD software, leveraging high‐precision space geodetic POD to investigate satellite drag and assess density models. This work presents a case study to examine five models (NRLMSIS2.0, DTM2020, JB2008, TIEGCM, and CTIPe) using precise science orbit (PSO) solutions of the Ice, Cloud, and Land Elevation Satellite‐2 (ICESat‐2). The PSO is used as tracking measurements to construct orbit fits, enabling an evaluation according to each model's ability to redetermine the orbit. Relative in‐track deviations, quantified by in‐track residuals and root‐mean‐square errors (RMSe), are treated as proxies for model densities that differ from an unknown true density. The study investigates assumptions related to the treatment of the drag coefficient and leverages them to eliminate bias and effectively scale model density. Assessment results and interpretations are dictated by the timescale at which the scaling occurs. DTM2020 requires the least scaling (∼−7%) to achieve orbit fits closely matching the PSO within an in‐track RMSe of 7 m when scaled over 2 weeks and 2 m when scaled daily. The remaining models require substantial scaling of the mean density offset (∼30 − 75%) to construct orbit fits that meet the aforementioned RMSe criteria. All models exhibit slight over or under‐sensitivity to geomagnetic activity according to trends in their 24‐hr scaling factors.","PeriodicalId":510519,"journal":{"name":"Space Weather","volume":"8 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Weather","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1029/2023sw003603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on utilizing the increasing availability of satellite trajectory data from global navigation satellite system‐enabled low‐Earth orbiting satellites and their precision orbit determination (POD) solutions to expand and refine thermospheric model validation capabilities. The research introduces an updated interface for the GEODYN‐II POD software, leveraging high‐precision space geodetic POD to investigate satellite drag and assess density models. This work presents a case study to examine five models (NRLMSIS2.0, DTM2020, JB2008, TIEGCM, and CTIPe) using precise science orbit (PSO) solutions of the Ice, Cloud, and Land Elevation Satellite‐2 (ICESat‐2). The PSO is used as tracking measurements to construct orbit fits, enabling an evaluation according to each model's ability to redetermine the orbit. Relative in‐track deviations, quantified by in‐track residuals and root‐mean‐square errors (RMSe), are treated as proxies for model densities that differ from an unknown true density. The study investigates assumptions related to the treatment of the drag coefficient and leverages them to eliminate bias and effectively scale model density. Assessment results and interpretations are dictated by the timescale at which the scaling occurs. DTM2020 requires the least scaling (∼−7%) to achieve orbit fits closely matching the PSO within an in‐track RMSe of 7 m when scaled over 2 weeks and 2 m when scaled daily. The remaining models require substantial scaling of the mean density offset (∼30 − 75%) to construct orbit fits that meet the aforementioned RMSe criteria. All models exhibit slight over or under‐sensitivity to geomagnetic activity according to trends in their 24‐hr scaling factors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 GEODYN 的精确轨道测定评估热层中性密度模型
这项研究的重点是利用全球导航卫星系统支持的低地轨道卫星提供的越来越多的卫星轨迹数据及其精确轨道测定(POD)解决方案,扩大和完善热层模型验证能力。这项研究介绍了 GEODYN-II POD 软件的更新界面,利用高精度空间大地测量 POD 来研究卫星阻力和评估密度模型。这项工作提出了一个案例研究,利用冰、云和陆地高程卫星-2(ICESat-2)的精确科学轨道(PSO)解决方案来检验五个模型(NRLMSIS2.0、DTM2020、JB2008、TIEGCM 和 CTIPe)。PSO 被用作构建轨道拟合的跟踪测量数据,从而能够根据每个模型重新确定轨道的能力进行评估。用轨道内残差和均方根误差(RMSe)量化的轨道内相对偏差被视为模型密度与未知真实密度不同的代用指标。研究调查了与阻力系数处理相关的假设,并利用这些假设消除偏差,有效地缩放模型密度。评估结果和解释取决于缩放的时间尺度。DTM2020 需要最少的缩放(∼-7%)来实现轨道拟合,在轨道内均方根值为 7 米(按 2 周缩放)和 2 米(按日缩放)的范围内与 PSO 密切匹配。其余的模型需要对平均密度偏移量进行大幅缩放(30%-75%),才能构建出符合上述有效值标准的轨道拟合。根据其 24 小时缩放因子的趋势,所有模式对地磁活动都表现出轻微的过度敏感或不敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Inner Radiation Belt Simulations During the Successive Geomagnetic Storm Event of February 2022 Modeling GIC in the Southern South Island of Aotearoa New Zealand Using Magnetotelluric Data MAOOA‐Residual‐Attention‐BiConvLSTM: An Automated Deep Learning Framework for Global TEC Map Prediction Enhanced Sporadic E Layer and Its Perturbations During the 2022 Hunga Volcanic Eruption Updating Measures of CME Arrival Time Errors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1