{"title":"Analysis and reduction of electromagnetic vibration in integral-slot PM machine by functional magnet structure","authors":"Yunhao Wang, Zhiguang Liu, Zhiyong Yang","doi":"10.3233/jae-220311","DOIUrl":null,"url":null,"abstract":"It is significant to balances torque and vibration performance for the surface-mounted permanent magnet (PM) machines. This paper proposes a functional magnet structure to suppress the vibration response of integral-slot surface-mounted PM machines. At the same time, the torque ripple is also greatly reduced without sacrificing the average torque. Firstly, taking the 48-slot/8-pole PM machine as an example, the main sources of the air-gap radial force are analyzed based on the Maxwell stress equation. Thereby, the main PM flux density harmonic components that contribute to the radial force are pointed out. Secondly, the design method of different functional magnet structure is investigated. Then, the effects of different magnet shapes on the torque and vibration performances are compared. The result shows that the proposed sinusoidal+3rd-order harmonic injection functional magnet structure can effectively improve the vibration performance without sacrificing the average torque. Finally, the prototype of the 48-slot/8-pole PM with functional magnet structure is manufactured, and the experiments are carried out for validation.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Electromagnetics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-220311","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
It is significant to balances torque and vibration performance for the surface-mounted permanent magnet (PM) machines. This paper proposes a functional magnet structure to suppress the vibration response of integral-slot surface-mounted PM machines. At the same time, the torque ripple is also greatly reduced without sacrificing the average torque. Firstly, taking the 48-slot/8-pole PM machine as an example, the main sources of the air-gap radial force are analyzed based on the Maxwell stress equation. Thereby, the main PM flux density harmonic components that contribute to the radial force are pointed out. Secondly, the design method of different functional magnet structure is investigated. Then, the effects of different magnet shapes on the torque and vibration performances are compared. The result shows that the proposed sinusoidal+3rd-order harmonic injection functional magnet structure can effectively improve the vibration performance without sacrificing the average torque. Finally, the prototype of the 48-slot/8-pole PM with functional magnet structure is manufactured, and the experiments are carried out for validation.
期刊介绍:
The aim of the International Journal of Applied Electromagnetics and Mechanics is to contribute to intersciences coupling applied electromagnetics, mechanics and materials. The journal also intends to stimulate the further development of current technology in industry. The main subjects covered by the journal are:
Physics and mechanics of electromagnetic materials and devices
Computational electromagnetics in materials and devices
Applications of electromagnetic fields and materials
The three interrelated key subjects – electromagnetics, mechanics and materials - include the following aspects: electromagnetic NDE, electromagnetic machines and devices, electromagnetic materials and structures, electromagnetic fluids, magnetoelastic effects and magnetosolid mechanics, magnetic levitations, electromagnetic propulsion, bioelectromagnetics, and inverse problems in electromagnetics.
The editorial policy is to combine information and experience from both the latest high technology fields and as well as the well-established technologies within applied electromagnetics.