Study on fault diagnosis of ultra-low-speed bearings under variable working conditions based on improved EfficientNet network

Yuanling Chen, Hao Shi, Yaguang Jin, Yuan Liu
{"title":"Study on fault diagnosis of ultra-low-speed bearings under variable working conditions based on improved EfficientNet network","authors":"Yuanling Chen, Hao Shi, Yaguang Jin, Yuan Liu","doi":"10.1784/insi.2024.66.2.94","DOIUrl":null,"url":null,"abstract":"Bearing fault diagnosis plays an important part in preventing rotating equipment faults, especially in the field of ultra-low-speed bearing fault diagnosis. Due to their low fault frequency and insignificant fault characteristics, it is difficult to realise the fault diagnosis of ultra-low-speed\n bearings using traditional methods; therefore, based on acoustic emission (AE) signals, this study proposes an ultra-low-speed bearing recognition model with EfficientNet as the backbone feature extraction network and successfully achieves bearing fault diagnosis under small-sample variable\n working conditions combined with transfer learning. The coordinate attention (CA) mechanism is introduced into the EfficientNet backbone feature extraction network to improve the ability of the model to extract detailed position information. The AdamW optimisation algorithm is introduced to\n improve the generalisation ability of the model. Combined with the idea of transfer learning, the data under different working conditions are trained and tested to form a high-performance and lightweight small-sample variable condition bearing recognition model called EfficientNet-CA-AdamW\n (EfficientNet-CAA). Comparison experiments show that the EfficientNet-CAA model proposed in this study has an accuracy of 99.81% for ultra-low-speed bearing recognition when the training samples are sufficient. Furthermore, the recognition accuracy is smoother and the loss function is significantly\n lower compared with convolutional neural network (CNN) models such as AlexNet, VGG-16, ResNet-34, ShuffleNet-V2 and EfficientNet-B0. In small-sample variable condition fault recognition, it has more powerful advantages compared with the other models. The recognition accuracy under variable\n conditions can reach more than 98%, which is significantly higher than that of the other models, and effectively improves the bearing fault recognition accuracy under small-sample variable conditions. In this study, the CA mechanism and the AdamW optimisation algorithm are introduced to lessen\n the difficulty of extracting detailed features and address the lack of generalisation ability of the EfficientNet model, which provides an idea for the application of the deep learning model to small-sample bearing fault diagnosis under variable working conditions.","PeriodicalId":344397,"journal":{"name":"Insight - Non-Destructive Testing and Condition Monitoring","volume":"80 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insight - Non-Destructive Testing and Condition Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1784/insi.2024.66.2.94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bearing fault diagnosis plays an important part in preventing rotating equipment faults, especially in the field of ultra-low-speed bearing fault diagnosis. Due to their low fault frequency and insignificant fault characteristics, it is difficult to realise the fault diagnosis of ultra-low-speed bearings using traditional methods; therefore, based on acoustic emission (AE) signals, this study proposes an ultra-low-speed bearing recognition model with EfficientNet as the backbone feature extraction network and successfully achieves bearing fault diagnosis under small-sample variable working conditions combined with transfer learning. The coordinate attention (CA) mechanism is introduced into the EfficientNet backbone feature extraction network to improve the ability of the model to extract detailed position information. The AdamW optimisation algorithm is introduced to improve the generalisation ability of the model. Combined with the idea of transfer learning, the data under different working conditions are trained and tested to form a high-performance and lightweight small-sample variable condition bearing recognition model called EfficientNet-CA-AdamW (EfficientNet-CAA). Comparison experiments show that the EfficientNet-CAA model proposed in this study has an accuracy of 99.81% for ultra-low-speed bearing recognition when the training samples are sufficient. Furthermore, the recognition accuracy is smoother and the loss function is significantly lower compared with convolutional neural network (CNN) models such as AlexNet, VGG-16, ResNet-34, ShuffleNet-V2 and EfficientNet-B0. In small-sample variable condition fault recognition, it has more powerful advantages compared with the other models. The recognition accuracy under variable conditions can reach more than 98%, which is significantly higher than that of the other models, and effectively improves the bearing fault recognition accuracy under small-sample variable conditions. In this study, the CA mechanism and the AdamW optimisation algorithm are introduced to lessen the difficulty of extracting detailed features and address the lack of generalisation ability of the EfficientNet model, which provides an idea for the application of the deep learning model to small-sample bearing fault diagnosis under variable working conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进型 EfficientNet 网络的变工况超低速轴承故障诊断研究
轴承故障诊断在预防旋转设备故障方面发挥着重要作用,尤其是在超低速轴承故障诊断领域。由于超低速轴承故障频率低、故障特征不明显,传统方法难以实现对超低速轴承的故障诊断;因此,本研究基于声发射(AE)信号,提出了以 EfficientNet 为骨干特征提取网络的超低速轴承识别模型,并结合迁移学习成功实现了小样本变量工况下的轴承故障诊断。在 EfficientNet 骨干特征提取网络中引入了坐标注意(CA)机制,以提高模型提取详细位置信息的能力。此外,还引入了 AdamW 优化算法,以提高模型的泛化能力。结合迁移学习的思想,对不同工况下的数据进行训练和测试,形成高性能、轻量级的小样本可变工况轴承识别模型,即效能网-CA-AdamW(EfficientNet-CAA)。对比实验表明,在训练样本充足的情况下,本研究提出的 EfficientNet-CAA 模型的超低速轴承识别准确率达到 99.81%。此外,与 AlexNet、VGG-16、ResNet-34、ShuffleNet-V2 和 EfficientNet-B0 等卷积神经网络(CNN)模型相比,其识别准确率更加平滑,损失函数明显降低。在小样本多变条件下的故障识别中,它与其他模型相比具有更强大的优势。在变量条件下的识别准确率可达 98% 以上,明显高于其他模型,有效提高了小样本变量条件下轴承故障的识别准确率。本研究引入了CA机制和AdamW优化算法,降低了提取细节特征的难度,解决了EfficientNet模型泛化能力不足的问题,为深度学习模型在多变工况下小样本轴承故障诊断中的应用提供了思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-criterion analysis-based artificial intelligence system for condition monitoring of electrical transformers MFL detection of adjacent pipeline defects: a finite element simulation of signal characteristics A multi-frequency balanced electromagnetic field measurement for arbitrary angles of pipeline cracks with high sensitivity Ultrasonic total focusing method for internal defects in composite insulators Developments in ultrasonic and eddy current testing in the 1970s and 1980s with emphasis on the requirements of the UK nuclear power industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1