Nonaqueous electrolytes for reversible zinc electrodeposition for dynamic windows with excellent optical contrast and durability

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Joule Pub Date : 2024-04-17 DOI:10.1016/j.joule.2024.01.023
Nikhil C. Bhoumik , Desmond C. Madu , Cheon Woo Moon , Lorenzo S. Arvisu , Michael D. McGehee , Christopher J. Barile
{"title":"Nonaqueous electrolytes for reversible zinc electrodeposition for dynamic windows with excellent optical contrast and durability","authors":"Nikhil C. Bhoumik ,&nbsp;Desmond C. Madu ,&nbsp;Cheon Woo Moon ,&nbsp;Lorenzo S. Arvisu ,&nbsp;Michael D. McGehee ,&nbsp;Christopher J. Barile","doi":"10.1016/j.joule.2024.01.023","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>In this study, we design high-performing dynamic windows based on the reversible electrodeposition of Zn from nonaqueous electrolytes containing dimethyl sulfoxide (DMSO). We develop Zn-DMSO electrolytes that support electrochemically and optically reversible Zn electrodeposition with high optical contrast (∼75% clear-state transmission and &lt;0.1% dark-state transmission). The </span>optoelectronic reversibility of the Zn electrodeposition enables devices to cycle thousands of times without degradation in optical contrast. The electrolytes facilitate the formation of a compact Zn electrodeposit morphology that blocks light efficiently, which reduces the current needed and thereby aids in device scale-up due to a minimal voltage drop across the transparent conducting electrode. Devices with a transparent Zn mesh as the counter electrode switch uniformly at the 100-cm</span><sup>2</sup> scale. Lastly, the noncorrosive nature of the Zn electrolytes results in the formation of devices that possess long-term shelf lives and dark-state stability in the absence of applied power.</p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"8 4","pages":"Pages 1036-1049"},"PeriodicalIF":38.6000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435124000503","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we design high-performing dynamic windows based on the reversible electrodeposition of Zn from nonaqueous electrolytes containing dimethyl sulfoxide (DMSO). We develop Zn-DMSO electrolytes that support electrochemically and optically reversible Zn electrodeposition with high optical contrast (∼75% clear-state transmission and <0.1% dark-state transmission). The optoelectronic reversibility of the Zn electrodeposition enables devices to cycle thousands of times without degradation in optical contrast. The electrolytes facilitate the formation of a compact Zn electrodeposit morphology that blocks light efficiently, which reduces the current needed and thereby aids in device scale-up due to a minimal voltage drop across the transparent conducting electrode. Devices with a transparent Zn mesh as the counter electrode switch uniformly at the 100-cm2 scale. Lastly, the noncorrosive nature of the Zn electrolytes results in the formation of devices that possess long-term shelf lives and dark-state stability in the absence of applied power.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于可逆锌电沉积的非水电解质,可制造出具有出色光学对比度和耐久性的动态窗口
在这项研究中,我们设计了基于从含有二甲基亚砜(DMSO)的非水电解质中可逆电沉积锌的高性能动态窗口。我们开发的 Zn-DMSO 电解质支持电化学和光学可逆的 Zn 电沉积,并具有很高的光学对比度(∼75% 的明态透射率和 <0.1% 的暗态透射率)。锌电沉积的光电可逆性使器件可以循环数千次而不会降低光学对比度。电解质有助于形成紧凑的锌电沉积形态,从而有效地阻挡光线,由于透明导电电极上的压降最小,这就减少了所需的电流,从而有助于器件的放大。以透明 Zn 网作为对电极的器件可在 100 平方厘米的范围内均匀切换。最后,由于锌电解质的非腐蚀性,所形成的器件在无外加电源的情况下具有长期的保质期和暗态稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
期刊最新文献
Overlooked calendar issues of aqueous zinc metal batteries Sulfonated poly(ether-ether-ketone) membranes with intrinsic microporosity enable efficient redox flow batteries for energy storage Rethinking the stability impacts of 2D/3D perovskites Operando monitoring of battery process at nanoscale Practical minimum energy use of seawater reverse osmosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1