Flower-like Fe-doped NiSe2/C hybrid spheres fabricated by a glucose-intercalation strategy for enhanced sodium storage properties

Cheng Liu , Yi Wen , Gaoya Ren , Yaxuan Li , Qianqian Sun , Shenghui Shen , Zhujun Yao , Yefeng Yang
{"title":"Flower-like Fe-doped NiSe2/C hybrid spheres fabricated by a glucose-intercalation strategy for enhanced sodium storage properties","authors":"Cheng Liu ,&nbsp;Yi Wen ,&nbsp;Gaoya Ren ,&nbsp;Yaxuan Li ,&nbsp;Qianqian Sun ,&nbsp;Shenghui Shen ,&nbsp;Zhujun Yao ,&nbsp;Yefeng Yang","doi":"10.1016/j.chphma.2024.01.004","DOIUrl":null,"url":null,"abstract":"<div><p>Nickel diselenide (NiSe<sub>2</sub>), which has a high theoretical capacity, has attracted considerable attention as a promising anode material for sodium-ion batteries (SIBs). Nevertheless, the intrinsically low conductivity, large volume variation, and significant aggregation of NiSe<sub>2</sub> during sodiation/desodiation remain significant obstacles to its application. Herein, we report flower-like Fe-doped NiSe<sub>2</sub>/C hybrid spheres (denoted as Fe-NiSe<sub>2</sub>/C) fabricated by a glucose intercalation strategy for efficient sodium storage. These Fe-NiSe<sub>2</sub>/C hybrid spheres are composed of thin porous carbon nanosheets decorated with Fe-NiSe<sub>2</sub> nanoparticles. In situ introduced carbon nanosheets derived from intercalated glucose accompanied by moderate Fe doping in NiSe<sub>2</sub> nanoparticles can provide accelerated ion/electron transfer kinetics through fast ion channels in the flower-like architecture and intimately contacted interfaces between NiSe<sub>2</sub> and carbon nanosheets as well as maintain structural integrity by alleviating volume variation. Consequently, the optimal anode of the Fe-NiSe<sub>2</sub>/C hybrid spheres delivered a high discharge capacity of 415 mAh g<sup>−1</sup> at 0.5 A g<sup>−1</sup>, outstanding rate capability (243 mAh g<sup>−1</sup> at 5 A g<sup>−1</sup>), and significantly enhanced cycling stability (388 mAh g<sup>−1</sup> at 1 A g<sup>−1</sup> over 200 cycles). This work offers an efficient and valuable strategy for realizing tailored heteroatom doping in transition metal selenides, accompanied by an in situ combination of conductive carbonaceous networks for advanced alkali metal ion batteries.</p></div>","PeriodicalId":100236,"journal":{"name":"ChemPhysMater","volume":"3 2","pages":"Pages 220-229"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772571524000044/pdfft?md5=64d9c59893b67262581be2672adb8f61&pid=1-s2.0-S2772571524000044-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPhysMater","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772571524000044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nickel diselenide (NiSe2), which has a high theoretical capacity, has attracted considerable attention as a promising anode material for sodium-ion batteries (SIBs). Nevertheless, the intrinsically low conductivity, large volume variation, and significant aggregation of NiSe2 during sodiation/desodiation remain significant obstacles to its application. Herein, we report flower-like Fe-doped NiSe2/C hybrid spheres (denoted as Fe-NiSe2/C) fabricated by a glucose intercalation strategy for efficient sodium storage. These Fe-NiSe2/C hybrid spheres are composed of thin porous carbon nanosheets decorated with Fe-NiSe2 nanoparticles. In situ introduced carbon nanosheets derived from intercalated glucose accompanied by moderate Fe doping in NiSe2 nanoparticles can provide accelerated ion/electron transfer kinetics through fast ion channels in the flower-like architecture and intimately contacted interfaces between NiSe2 and carbon nanosheets as well as maintain structural integrity by alleviating volume variation. Consequently, the optimal anode of the Fe-NiSe2/C hybrid spheres delivered a high discharge capacity of 415 mAh g−1 at 0.5 A g−1, outstanding rate capability (243 mAh g−1 at 5 A g−1), and significantly enhanced cycling stability (388 mAh g−1 at 1 A g−1 over 200 cycles). This work offers an efficient and valuable strategy for realizing tailored heteroatom doping in transition metal selenides, accompanied by an in situ combination of conductive carbonaceous networks for advanced alkali metal ion batteries.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用葡萄糖插层策略制造的花朵状掺杂铁的 NiSe2/C 混合球体可增强钠储存性能
二硒化镍(NiSe2)具有很高的理论容量,作为钠离子电池(SIB)的一种前景广阔的阳极材料,已经引起了广泛关注。然而,NiSe2 固有的低电导率、巨大的体积变化以及在钠化/解钠过程中的显著聚集仍然是其应用的重大障碍。在此,我们报告了通过葡萄糖插层策略制造的花状掺杂铁的 NiSe2/C 混合球(简称为 Fe-NiSe2/C),用于高效钠存储。这些 Fe-NiSe2/C 混合球由装饰有 Fe-NiSe2 纳米颗粒的薄多孔碳纳米片组成。在 NiSe2 纳米粒子中适度掺杂铁的同时,原位引入由插层葡萄糖衍生的碳纳米片,可通过花状结构中的快速离子通道以及 NiSe2 和碳纳米片之间紧密接触的界面加速离子/电子转移动力学,并通过减轻体积变化保持结构的完整性。因此,Fe-NiSe2/C 混合球的最佳阳极在 0.5 A g-1 的条件下可实现 415 mAh g-1 的高放电容量、出色的速率能力(5 A g-1 时为 243 mAh g-1)以及显著增强的循环稳定性(1 A g-1 时为 388 mAh g-1,循环 200 次)。这项研究为在过渡金属硒化物中实现量身定制的杂原子掺杂提供了一种高效而有价值的策略,同时还为先进的碱金属离子电池提供了导电碳质网络的原位组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
期刊最新文献
Detection of a glass fiber-reinforced polymer with defects by terahertz computed tomography Anisotropic etching of 2D layered materials A first look at the formation of PEO-PDA coatings on 3D titanium Theoretical study on the efficiency of new organic dyes based on (E)-2-(2-(thiophen-3-yl)vinyl)-1,1′-bipyrrole as dye-sensitized solar cell sensitizers Swollen hydrogel nanotechnology: Advanced applications of the rudimentary swelling properties of hydrogels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1