Mika Goshozono, Nozomi Miura, Suguru Torii, Motoko Taguchi
{"title":"Characteristics of non-exercise activity thermogenesis in male collegiate athletes under real-life conditions","authors":"Mika Goshozono, Nozomi Miura, Suguru Torii, Motoko Taguchi","doi":"10.3389/fspor.2024.1326890","DOIUrl":null,"url":null,"abstract":"Athletes experience high total energy expenditure; therefore, it is important to understand the characteristics of the components contributing to this expenditure. To date, few studies have examined particularly the volume and activity intensity of non-exercise activity thermogenesis (NEAT) in athletes compared to non-athletes under real-life conditions. This study aimed to determine the volume and intensity of NEAT in collegiate athletes. Highly trained Japanese male collegiate athletes (n = 21) and healthy sedentary male students (n = 12) participated in this study. All measurements were obtained during the athletes' regular training season under real-life conditions. NEAT was calculated using metabolic equivalent (MET) data using an accelerometer. The participants were asked to wear a validated triaxial accelerometer for 7 consecutive days. Physical activity intensity in NEAT was classified into sedentary (1.0–1.5 METs), light (1.6–2.9 METs), moderate (3.0–5.9 METs), and vigorous (≥6 METs) intensity. NEAT was significantly higher in athletes than in non-athletes (821 ± 185 kcal/day vs. 643 ± 164 kcal/day, p = 0.009). Although there was no significant difference in NEAT values relative to body weight (BW) between the groups (athletes: 10.5 ± 1.7 kcal/kg BW/day, non-athletes: 10.4 ± 2.2 kcal/kg BW/day, p = 0.939), NEAT to BW per hour was significantly higher in athletes than in non-athletes (0.81 ± 0.16 kcal/kg BW/h vs. 0.66 ± 0.12 kcal/kg BW/h, p = 0.013). Athletes spent less time in sedentary and light-intensity activities and more time in vigorous-intensity activities than non-athletes (p < 0.001, p = 0.019, and p = 0.030, respectively). Athletes expended more energy on vigorous- and moderate-intensity activities than non-athletes (p = 0.009 and p = 0.011, respectively). This study suggests that athletes' NEAT relative to BW per day is similar to that of non-athletes, but athletes spend less time on NEAT, which makes them more active in their daily lives when not exercising and sleeping.","PeriodicalId":509602,"journal":{"name":"Frontiers in Sports and Active Living","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Sports and Active Living","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fspor.2024.1326890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Athletes experience high total energy expenditure; therefore, it is important to understand the characteristics of the components contributing to this expenditure. To date, few studies have examined particularly the volume and activity intensity of non-exercise activity thermogenesis (NEAT) in athletes compared to non-athletes under real-life conditions. This study aimed to determine the volume and intensity of NEAT in collegiate athletes. Highly trained Japanese male collegiate athletes (n = 21) and healthy sedentary male students (n = 12) participated in this study. All measurements were obtained during the athletes' regular training season under real-life conditions. NEAT was calculated using metabolic equivalent (MET) data using an accelerometer. The participants were asked to wear a validated triaxial accelerometer for 7 consecutive days. Physical activity intensity in NEAT was classified into sedentary (1.0–1.5 METs), light (1.6–2.9 METs), moderate (3.0–5.9 METs), and vigorous (≥6 METs) intensity. NEAT was significantly higher in athletes than in non-athletes (821 ± 185 kcal/day vs. 643 ± 164 kcal/day, p = 0.009). Although there was no significant difference in NEAT values relative to body weight (BW) between the groups (athletes: 10.5 ± 1.7 kcal/kg BW/day, non-athletes: 10.4 ± 2.2 kcal/kg BW/day, p = 0.939), NEAT to BW per hour was significantly higher in athletes than in non-athletes (0.81 ± 0.16 kcal/kg BW/h vs. 0.66 ± 0.12 kcal/kg BW/h, p = 0.013). Athletes spent less time in sedentary and light-intensity activities and more time in vigorous-intensity activities than non-athletes (p < 0.001, p = 0.019, and p = 0.030, respectively). Athletes expended more energy on vigorous- and moderate-intensity activities than non-athletes (p = 0.009 and p = 0.011, respectively). This study suggests that athletes' NEAT relative to BW per day is similar to that of non-athletes, but athletes spend less time on NEAT, which makes them more active in their daily lives when not exercising and sleeping.